Quantitative experiments are essential for investigating, uncovering, and confirming our understanding of complex systems, necessitating the use of effective and robust experimental designs. Despite generally outperforming other approaches, the broader adoption of model-based design of experiments (MBDoE) has been hindered by oversimplified assumptions and computational overhead. To address this, we present PARameter SEnsitivity Clustering (PARSEC), an MBDoE framework that identifies informative measurable combinations through parameter sensitivity (PS) clustering.
View Article and Find Full Text PDFLife cycle processes of positive-strand (+)RNA viruses are broadly conserved across families, yet they employ different strategies to grow in the cell. Using a generalized dynamical model for intracellular (+)RNA virus growth, we decipher these life cycle determinants and their dependencies for several viruses and parse the effects of viral mutations, drugs and host cell permissivity. We show that poliovirus employs rapid replication and virus assembly, whereas the Japanese encephalitis virus leverages its higher rate of translation and efficient cellular reorganization compared to the hepatitis C virus.
View Article and Find Full Text PDFIn this work, we investigate the impact of the COVID-19 pandemic on sovereign bond yields. We consider the temporal changes from financial correlations using network filtering methods. These methods consider a subset of links within the correlation matrix, which gives rise to a network structure.
View Article and Find Full Text PDF