Publications by authors named "Harsh Bhakta"

Vibrational polaritons have shown potential in influencing chemical reactions, but the exact mechanism by which they impact vibrational energy redistribution, crucial for rational polariton chemistry design, remains unclear. In this work, we shed light on this aspect by revealing the role of solvent phonon modes in facilitating the energy relaxation process from the polaritons formed of a mode of W(CO) to an IR inactive mode. Ultrafast dynamic measurements indicate that along with the direct relaxation to the dark modes, lower polaritons also transition to an intermediate state, which then subsequently relaxes to the mode.

View Article and Find Full Text PDF

Vibrational polaritons, which have been primarily studied in Fabry-Pérot cavities with a large number of molecules ( ∼ 10-10) coupled to the resonator mode, exhibit various experimentally observed effects on chemical reactions. However, the exact mechanism is elusively understood from the theoretical side, as the large number of molecules involved in an experimental strong coupling condition cannot be represented completely in simulations. This discrepancy between theory and experiment arises from computational descriptions of polariton systems typically being limited to only a few molecules, thus failing to represent the experimental conditions adequately.

View Article and Find Full Text PDF

Strong coupling of cavity photons and molecular vibrations creates vibrational polaritons that have been shown to modify chemical reactivity and alter material properties. While ultrafast spectroscopy of vibrational polaritons has been performed intensively in metal complexes, ultrafast dynamics in vibrationally strongly coupled organic molecules remain unexplored. Here, we report ultrafast pump-probe measurement and two-dimensional infrared spectroscopy in diphenylphosphoryl azide under vibrational strong coupling.

View Article and Find Full Text PDF

In this study, the "particle in a box" idea, which was broadly developed in semiconductor quantum dot research, was extended into mid-infrared (IR) cavity modes by applying lateral confinement in an optical cavity. The discrete cavity modes hybridized with molecular vibrational modes, resulting in a quartet of polariton states that can support multiple coherence states in the IR regime. We applied tailored pump pulse sequences to selectively prepare these coherences and verified the multi-coherence existence.

View Article and Find Full Text PDF