Publications by authors named "Harry S Rollema"

This paper describes the effect of the kappa/iota-ratio on the physical properties of kappa/iota-hybrid carrageenans (synonyms: kappa-2, kappa-2, weak kappa, weak gelling kappa). To this end, a series of kappa/iota-hybrid carrageenans ranging from almost homopolymeric kappa-carrageenan (98 mol-% kappa-units) to almost homopolymeric-carrageenan (99 mol-% iota-units) have been extracted from selected species of marine red algae (Rhodophyta). The kappa/iota-ratio of these kappa/iota-hybrids was determined by NMR spectroscopy.

View Article and Find Full Text PDF

A new set of (13)C and (1)H NMR chemical shifts of most common carrageenan types is given relative to DSS as the internal standard according to the IUPAC recommendations. Moreover, the chemical shifts of characteristic signals for pyruvate acetal and floridean starch are reported. Additionally, chemical shifts of common internal standards, such as methanol, DMSO and acetone, were measured at different temperatures and pH values.

View Article and Find Full Text PDF

Structural properties of whey protein (WP)/gum arabic (GA) coacervates were investigated by measuring the diffusivity of WP and GA in their coacervate phase as a function of pH by means of three different complementary techniques. The combination of these measurements revealed new insights into the structure of coacervates. Nuclear magnetic resonance (NMR) measured the self-diffusion coefficient of the GA in the coacervate phase prepared at various pH values.

View Article and Find Full Text PDF

A series of iota-carrageenans containing different amounts of nu-carrageenan (0-23 monomer %) have been prepared from neutrally extracted carrageenan of Eucheuma denticulatum. nu-Carrageenan is the biochemical precursor of iota-carrageenan. The conformational order-disorder transition and rheological properties of these carrageenans were studied using optical rotation, rheometry, size exclusion chromatography coupled to multiangle laser light scattering, and high-sensitivity differential scanning calorimetry.

View Article and Find Full Text PDF