Liquid crystal (LC) contact lenses are emerging as an exciting technology for vision correction. A homeotropically (vertical) aligned LC lens is reported that offers improved optical quality and simplified construction techniques over previously reported LC contact lens designs. The lens has no polarization dependence in the off state and produces a continuous change in optical power of up to 2.
View Article and Find Full Text PDFPresbyopia, the age-related reduction in near vision acuity, is one of the leading issues facing the contact lens industry due to an increasingly ageing population and limitations associated with existing designs. A plastic-based liquid crystal contact lens is described which is designed to allow switchable vision correction. The device is characterized by low operating voltages (<5V(rms)) and has curvatures suitable for placement upon the cornea.
View Article and Find Full Text PDFA multigrid computational model has been developed to assess the performance of refractive liquid crystal lenses, which is up to 40 times faster than previous techniques. Using this model, the optimum geometries producing an ideal parabolic voltage distribution were deduced for refractive liquid crystal lenses with diameters from 1 to 9 mm. The ratio of insulation thickness to lens diameter was determined to be 1:2 for small diameter lenses, tending to 1:3 for larger lenses.
View Article and Find Full Text PDF