Publications by authors named "Harry Garg"

A carefully designed daylight collector for a tubular skylight is necessary to serve the occupants' illumination needs under the dynamic trajectory of the sun. This work simulated an improved configuration of a passive daylight collector comprising parabolic and conical reflectors in a modeled room using the lighting software tool TracePro. Results indicated that the lighting performance of the proposed design configuration was significantly enhanced under low altitude sun in comparison with conventional tubular skylights (with revolved parabolic and cylindrical reflectors) [Light.

View Article and Find Full Text PDF

In this paper, the mean-wavelength-based Fresnel lens was designed by merging the modified edge ray principle and idea of superposition. The bottom-to-top approach optimizes the design of individual prisms according to the predetermined plastic optical fiber (POF) bundle size. The simulated optical efficiency of the collector for the sun's visible spectrum (380-740 nm) light is 82.

View Article and Find Full Text PDF

After the outbreak of the COVID-19 pandemic, a rise in demand has occurred for efficient designs of disinfection systems that utilize ultraviolet-C (UVC) radiation to inactivate airborne microorganisms effectively. This paper proposes what we believe to be a novel standalone system for inactivating Mycobacterium tuberculosis (which requires a higher dosage value than SARS-CoV-2) from a medium size room of 12.5 ×12.

View Article and Find Full Text PDF

The World Health Organization (WHO) declared in May 2021 that SARS-CoV-2 is transmitted not only by close contact with infectious respiratory fluids from infected people or contaminated materials but also indirectly through air. Airborne transmission has serious implications for the control measures we can deploy, given the emergence of more transmissible variants. This emphasizes the need to deploy a mechanism to reduce the viral load in the air, especially in closed and crowded places such as hospitals, public transport buses, etc.

View Article and Find Full Text PDF

Deterministic optics fabrication using sub-aperture tools has been vital for manufacturing precision optical surfaces. The fabrication process requires the tool influence function and the tool path to calculate the dwell time that guides the tool to bring surface quality within tight design tolerances. Widely used spiral and raster paths may leave excess waviness from the tool path, and the unavoidable constant removal layer is added to obtain positive dwell time.

View Article and Find Full Text PDF

Surface errors directly affect the performance of optical systems in terms of contrast and resolution. Surface figure errors at different surface scales are deterministically removed using controlled material removal rate (MRR) during a precision optics fabrication process. We systematically sectioned the wide range of MRR space with systematic parameters and experimentally evaluated and mapped the MRR values using a flexible membrane-polishing tool.

View Article and Find Full Text PDF

Background: There is no standard technique to monitor impact absorption capability of mouthguards. Earlier investigations have established that strain transferred to the teeth through mouthguard is a good indication of their efficiency. In the present study, a unique experimental scheme utilizing fiber Bragg gratings (FBGs) as distributed strain sensors is proposed and investigated to estimate impact absorption capability of custom-made mouthguard.

View Article and Find Full Text PDF