Structured representations of clinical data can support computational analysis of individuals and cohorts, and ontologies representing disease entities and phenotypic abnormalities are now commonly used for translational research. The Medical Action Ontology (MAxO) provides a computational representation of treatments and other actions taken for the clinical management of patients. Currently, manual biocuration is used to assign MAxO terms to rare diseases, enabling clinical management of rare diseases to be described computationally for use in clinical decision support and mechanism discovery.
View Article and Find Full Text PDFMotivation: Graph representation learning is a family of related approaches that learn low-dimensional vector representations of nodes and other graph elements called embeddings. Embeddings approximate characteristics of the graph and can be used for a variety of machine-learning tasks such as novel edge prediction. For many biomedical applications, partial knowledge exists about positive edges that represent relationships between pairs of entities, but little to no knowledge is available about negative edges that represent the explicit lack of a relationship between two nodes.
View Article and Find Full Text PDFMotivation: Creating knowledge bases and ontologies is a time consuming task that relies on manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrarily complex nested knowledge schemas.
Results: Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning and general-purpose query answering from flexible prompts and return information conforming to a specified schema.
BMC Med Inform Decis Mak
January 2024
Objective: Clinical deep phenotyping and phenotype annotation play a critical role in both the diagnosis of patients with rare disorders as well as in building computationally-tractable knowledge in the rare disorders field. These processes rely on using ontology concepts, often from the Human Phenotype Ontology, in conjunction with a phenotype concept recognition task (supported usually by machine learning methods) to curate patient profiles or existing scientific literature. With the significant shift in the use of large language models (LLMs) for most NLP tasks, we examine the performance of the latest Generative Pre-trained Transformer (GPT) models underpinning ChatGPT as a foundation for the tasks of clinical phenotyping and phenotype annotation.
View Article and Find Full Text PDFBridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research.
View Article and Find Full Text PDFThe Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English.
View Article and Find Full Text PDFThe rapidly increasing and vast quantities of biomedical reports, each containing numerous entities and rich information, represent a rich resource for biomedical text-mining applications. These tools enable investigators to integrate, conceptualize, and translate these discoveries to uncover new insights into disease pathology and therapeutics. In this protocol, we present CaseOLAP LIFT, a new computational pipeline to investigate cellular components and their disease associations by extracting user-selected information from text datasets (e.
View Article and Find Full Text PDFMotivation: Knowledge graphs (KGs) are a powerful approach for integrating heterogeneous data and making inferences in biology and many other domains, but a coherent solution for constructing, exchanging, and facilitating the downstream use of KGs is lacking.
Results: Here we present KG-Hub, a platform that enables standardized construction, exchange, and reuse of KGs. Features include a simple, modular extract-transform-load pattern for producing graphs compliant with Biolink Model (a high-level data model for standardizing biological data), easy integration of any OBO (Open Biological and Biomedical Ontologies) ontology, cached downloads of upstream data sources, versioned and automatically updated builds with stable URLs, web-browsable storage of KG artifacts on cloud infrastructure, and easy reuse of transformed subgraphs across projects.
Molecular biologists frequently interpret gene lists derived from high-throughput experiments and computational analysis. This is typically done as a statistical enrichment analysis that measures the over- or under-representation of biological function terms associated with genes or their properties, based on curated assertions from a knowledge base (KB) such as the Gene Ontology (GO). Interpreting gene lists can also be framed as a textual summarization task, enabling Large Language Models (LLMs) to use scientific texts directly and avoid reliance on a KB.
View Article and Find Full Text PDFBackground: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested.
View Article and Find Full Text PDFWithin clinical, biomedical, and translational science, an increasing number of projects are adopting graphs for knowledge representation. Graph-based data models elucidate the interconnectedness among core biomedical concepts, enable data structures to be easily updated, and support intuitive queries, visualizations, and inference algorithms. However, knowledge discovery across these "knowledge graphs" (KGs) has remained difficult.
View Article and Find Full Text PDFYhcB, a poorly understood protein conserved across gamma-proteobacteria, contains a domain of unknown function (DUF1043) and an N-terminal transmembrane domain. Here, we used an integrated approach including X-ray crystallography, genetics, and molecular biology to investigate the function and structure of YhcB. The Escherichia coli yhcB KO strain does not grow at 45 °C and is hypersensitive to cell wall-acting antibiotics, even in the stationary phase.
View Article and Find Full Text PDFProteomics is, by definition, comprehensive and large-scale, seeking to unravel ome-level protein features with phenotypic information on an entire system, an organ, cells, or organisms. This scope consistently involves and extends beyond single experiments. Multitudinous resources now exist to assist in making the results of proteomics experiments more findable, accessible, interoperable, and reusable (FAIR), yet many tools are awaiting to be adopted by our community.
View Article and Find Full Text PDFProtein-protein interactions, or PPIs, constitute a basic unit of our understanding of protein function. Though substantial effort has been made to organize PPI knowledge into structured databases, maintenance of these resources requires careful manual curation. Even then, many PPIs remain uncurated within unstructured text data.
View Article and Find Full Text PDFClinical case reports (CCRs) provide an important means of sharing clinical experiences about atypical disease phenotypes and new therapies. However, published case reports contain largely unstructured and heterogeneous clinical data, posing a challenge to mining relevant information. Current indexing approaches generally concern document-level features and have not been specifically designed for CCRs.
View Article and Find Full Text PDFTwo-hybrid methods remain among the most preferred choices for detecting protein-protein interactions (PPIs) and much of the PPI data in databases have been produced using yeast two-hybrid (Y2H) screens. The Y2H methods are extensively used to detect PPIs because of their scalability and accessibility. Several variants of Y2H methods have been developed and used by different research groups, increasing the accessibility of these methods and their applications in detecting different types of PPIs.
View Article and Find Full Text PDFis a common pathogen that is estimated to infect half of the human population, causing several diseases such as duodenal ulcer. Despite one of the first pathogens to be sequenced, its proteome remains poorly characterized as about one-third of its proteins have no functional annotation. Here, we integrate and analyze known protein interactions with proteomic and genomic data from different sources.
View Article and Find Full Text PDFMycobacteriophage are viruses that infect mycobacteria. More than 1,400 mycobacteriophage genomes have been sequenced, coding for over one hundred thousand proteins of unknown functions. Here we investigate mycobacteriophage Giles-host protein-protein interactions (PPIs) using yeast two-hybrid screening (Y2H).
View Article and Find Full Text PDFBacterial cell envelope protein (CEP) complexes mediate a range of processes, including membrane assembly, antibiotic resistance and metabolic coordination. However, only limited characterization of relevant macromolecules has been reported to date. Here we present a proteomic survey of 1,347 CEPs encompassing 90% inner- and outer-membrane and periplasmic proteins of Escherichia coli.
View Article and Find Full Text PDFBackground: Protein-protein interactions (PPIs) can offer compelling evidence for protein function, especially when viewed in the context of proteome-wide interactomes. Bacteria have been popular subjects of interactome studies: more than six different bacterial species have been the subjects of comprehensive interactome studies while several more have had substantial segments of their proteomes screened for interactions. The protein interactomes of several bacterial species have been completed, including several from prominent human pathogens.
View Article and Find Full Text PDFUnlabelled: Mycobacteriophages are viruses that infect mycobacterial hosts and are prevalent in the environment. Nearly 700 mycobacteriophage genomes have been completely sequenced, revealing considerable diversity and genetic novelty. Here, we have determined the protein complement of mycobacteriophage Giles by mass spectrometry and mapped its genome-wide protein interactome to help elucidate the roles of its 77 predicted proteins, 50% of which have no known function.
View Article and Find Full Text PDF