Cancers (Basel)
August 2024
The combination of chemotherapy and targeted therapy has been validated in non-small-cell lung cancer (NSCLC) patients with mutations. We therefore investigated whether this type of combined approach could be more widely used by targeting other genetic alterations present in NSCLC. PDXs were generated from patients with NSCLC adenocarcinomas (ADCs) and squamous-cell carcinomas (SCCs).
View Article and Find Full Text PDFSince the late 2010s, Transcranial Ultrasound Stimulation (TUS) has been used experimentally to carryout safe, non-invasive stimulation of the brain with better spatial resolution than Transcranial Magnetic Stimulation (TMS). This innovative stimulation method has emerged as a novel and valuable device for studying brain function in humans and animals. In particular, single pulses of TUS directed to oculomotor regions have been shown to modulate visuomotor behavior of non-human primates during 100 ms ultrasound pulses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2020
Deep regions of the brain are not easily accessible to investigation at the mesoscale level in awake animals or humans. We have recently developed a functional ultrasound (fUS) technique that enables imaging hemodynamic responses to visual tasks. Using fUS imaging on two awake nonhuman primates performing a passive fixation task, we constructed retinotopic maps at depth in the visual cortex (V1, V2, and V3) in the calcarine and lunate sulci.
View Article and Find Full Text PDFGABA is an inhibitory neurotransmitter that is maintained outside the brain by the blood brain barrier in normal condition. In this paper we demonstrate the feasibility of modulating brain activity in the visual cortex of non-human primates by transiently permeabilizing the blood brain barrier (BBB) using focused ultrasound (FUS) coupled with ultrasound contrast agents (UCA), followed by intra-venous injection of GABA. The visual evoked potentials exhibited a significant and GABA-dose-depend decrease in activity.
View Article and Find Full Text PDFBackground: Transcranial focus ultrasound applications applied under MRI-guidance benefit from unrivaled monitoring capabilities, allowing the recording of real-time anatomical information and biomarkers like the temperature rise and/or displacement induced by the acoustic radiation force. Having both of these measurements could allow for better targeting of brain structures, with improved therapy monitoring and safety.
Method: We investigated the use of a novel MRI-pulse sequence described previously in Bour et al.
Neuroimaging modalities such as MRI and EEG are able to record from the whole brain, but this comes at the price of either limited spatiotemporal resolution or limited sensitivity. Here, we show that functional ultrasound imaging (fUS) of the brain is able to assess local changes in cerebral blood volume during cognitive tasks, with sufficient temporal resolution to measure the directional propagation of signals. In two macaques, we observed an abrupt transient change in supplementary eye field (SEF) activity when animals were required to modify their behaviour associated with a change of saccade tasks.
View Article and Find Full Text PDFTo understand brain circuits it is necessary both to record and manipulate their activity. Transcranial ultrasound stimulation (TUS) is a promising non-invasive brain stimulation technique. To date, investigations report short-lived neuromodulatory effects, but to deliver on its full potential for research and therapy, ultrasound protocols are required that induce longer-lasting 'offline' changes.
View Article and Find Full Text PDF