Publications by authors named "Harrison T Finn"

Introduction: Lumbar transcutaneous spinal cord stimulation (TSS) evokes synchronized muscle responses, termed spinally evoked motor response (sEMR). Whether the structures TSS activates to evoke sEMRs differ when TSS intensity and waveform are varied is unknown.

Methods: In 15 participants (9F:6M), sEMRs were evoked by TSS over L1-L3 (at sEMR threshold and suprathreshold intensities) using conventional (one 400-µs biphasic pulse) or high-frequency burst (ten 40-µs biphasic pulses at 10 kHz) stimulus waveforms in vastus medialis (VM), tibialis anterior (TA) and medial gastrocnemius (MG) muscles.

View Article and Find Full Text PDF

Study Design: Single centre training study.

Objectives: To investigate, in a group of people with spinal cord injury (SCI), the effect of transcutaneous functional electrical stimulation of the abdominal muscles (abdominal FES) during cough training on blood pressure (BP), and how it is affected by injury characteristics and alters over time.

Setting: Laboratory and community.

View Article and Find Full Text PDF

Transcutaneous electrical stimulation with repetitive bursts of a kilohertz carrier frequency is thought to be less painful than conventional pulsed currents by reducing the sensitivity of pain receptors. However, no purported benefit has been shown unequivocally. We compared the effects of carrier-frequency stimulation and conventional stimulation on pain tolerance and the thresholds for sensory and motor axons in twelve participants.

View Article and Find Full Text PDF

Acute intermittent hypoxia (AIH) can induce sustained facilitation of motor output in people with spinal cord injury (SCI). Most studies of corticospinal tract excitability in humans have used 9% fraction inspired oxygen ([Formula: see text]) AIH (AIH-9%), with inconsistent outcomes. We investigated the effect of single sessions of 9% [Formula: see text] and 12% [Formula: see text] AIH (AIH-12%) on corticospinal excitability of a hand and leg muscle in able-bodied adults.

View Article and Find Full Text PDF
Article Synopsis
  • Transcutaneous spinal cord stimulation (TSS) may enhance motor function for individuals with spinal cord injury (SCI), but more research on methodology is needed.
  • The study compared different electrode configurations and stimulation types (single-pulse vs. train) to see how they affected the intensity needed to trigger spinally evoked motor responses (sEMR) in leg muscles of participants with and without SCI.
  • Results showed that the L1-midline configuration required lower intensities for sEMR in non-SCI participants and that trains of stimulation generally resulted in lower thresholds, although single-pulse intensity might overestimate what’s needed for effective therapeutic TSS.
View Article and Find Full Text PDF

Altered neural processing and increased respiratory sensations have been reported in chronic obstructive pulmonary disease (COPD) as larger respiratory-related evoked potentials (RREPs), but the effect of healthy-aging has not been considered adequately. We tested RREPs evoked by brief airway occlusions in 10 participants with moderate-to-severe COPD, 11 age-matched controls (AMC) and 14 young controls (YC), with similar airway occlusion pressure stimuli across groups. Mean age was 76 years for COPD and AMC groups, and 30 years for the YC group.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Does a single session of repeated bouts of acute intermittent hypoxic breathing enhance the motoneuronal output of the limb muscles of healthy able-bodied participants? What is the main finding and its importance? Compared to breathing room air, there were some increases in motoneuronal output following acute intermittent hypoxia, but the increases were variable across participants and in time after the intervention and depended on which neurophysiological measure was checked.

Abstract: Acute intermittent hypoxia (AIH) induces persistent increases in output from rat phrenic motoneurones. Studies in people with spinal cord injury (SCI) suggest that AIH improves limb performance, perhaps via postsynaptic changes at cortico-motoneuronal synapses.

View Article and Find Full Text PDF

New Findings: What is the central question of this study? Is there a critical threshold beyond which the loss of muscle contractility is regulated by the level of muscle activation during single-limb exercise of differing intensities and volumes? What is the main finding and its importance? Plateaus in the decline in muscle contractility during single-limb knee extension depended on both exercise volume and contraction intensity.  A plateau was only evident with an increase in exercise volume.  Muscle activation increased and did not decline despite substantial reductions in contractility.

View Article and Find Full Text PDF

We examined if transcranial magnetic stimulation (TMS) is a valid tool for assessment of voluntary activation of the knee extensors in healthy individuals. Maximal M-waves (M) of vastus lateralis (VL) were evoked with electrical stimulation of femoral nerve (FNS); M of medial hamstrings (HS) was evoked with electrical stimulation of sciatic nerve branches; motor evoked potentials (MEPs) of VL and HS were evoked with TMS; superimposed twitches (SIT) of knee extensors were evoked with FNS and TMS. In , TMS intensity [69% output (SD: 5)] was optimized for MEP sizes, but guidelines for test validity could not be met.

View Article and Find Full Text PDF

Introduction: Fatigue-related group III/IV muscle afferent firing from agonist, antagonist or distal muscles impairs the ability to drive the elbow flexors maximally, that is, reduces voluntary activation. In the lower limb, the effect of feedback from distal muscles on the proximal knee extensors is unknown. Here, we test whether maintained group III/IV afferent feedback from the plantarflexor muscles reduces voluntary activation of the knee extensors.

View Article and Find Full Text PDF

Resistance training increases muscle size (i.e., causes hypertrophy) and muscle strength, particularly in untrained individuals.

View Article and Find Full Text PDF

During fatiguing voluntary contractions, the excitability of motoneurons innervating arm muscles decreases. However, the behavior of motoneurons innervating quadriceps muscles is unclear. Findings may be inconsistent because descending cortical input influences motoneuron excitability and confounds measures during exercise.

View Article and Find Full Text PDF

Purpose: To examine quadriceps muscle fatigue and central motor output during fatiguing single joint exercise at 40% and 80% maximal torque output in resistance trained men.

Method: Ten resistance trained men performed fatiguing isometric knee extensor exercise at 40% and 80% of maximal torque output. Maximal torque, rate of torque development, and measures of central motor output and peripheral muscle fatigue were recorded at two matched volumes of exercise, and after a final contraction performed to exhaustion.

View Article and Find Full Text PDF

The premise of eliciting the greatest acute fatigue is accepted and used for designing programs that include excessive, potentially dangerous volumes of high-intensity resistance exercise. There is no evidence examining acute fatigue and neuromuscular responses throughout multiple sets of moderate-to-high intensity resistance exercise. Fifteen resistance-trained male subjects performed a single exercise session using 8 sets of Bulgarian split squats performed at 75% maximal force output.

View Article and Find Full Text PDF