Publications by authors named "Harris E Mason"

Despite the discovery of actinide borohydride complexes over 80 years ago, no plutonium borohydride complexes have been structurally validated using single-crystal X-ray diffraction (XRD). Here we describe Pu(HBPBuBH), the first example of a Pu(III) borohydride complex authenticated by XRD and NMR spectroscopy. Theoretical calculations (DFT, EDA, and QTAIM) and experimental comparisons of metal-boron distances suggest that metal-borohydride covalency in M(HBPBuBH) complexes generally decreases in the order M = U(III) > Pu(III) > Ln(III).

View Article and Find Full Text PDF

Solid-state nuclear magnetic resonance (SSNMR) and nuclear quadrupole resonance (NQR) spectra provide detailed information about the electronic and atomic structure of solids. Modern methods such as density functional theory (DFT) can be used to calculate NMR and NQR spectra from first-principles, providing a meaningful avenue to connect theory and experiment. Prediction of SSNMR and NQR spectra from DFT relies on accurate calculation of the electric field gradient (EFG) tensor associated with the potential of electrons at the nuclear centers.

View Article and Find Full Text PDF

Numerous technologies-with catalytic, therapeutic, and diagnostic applications-would benefit from improved chelation strategies for heavy alkaline earth elements: Ra, Ba, and Sr. Unfortunately, chelating these metals is challenging because of their large size and weak polarizing power. We found 18-crown-6-tetracarboxylic acid () bound Ra, Ba, and Sr to form .

View Article and Find Full Text PDF

Marine dissolved organic nitrogen (DON) is one of the planet's largest reservoirs of fixed N, which persists even in the N-limited oligotrophic surface ocean. The vast majority of the ocean's total DON reservoir is refractory (RDON), primarily composed of low molecular weight (LMW) compounds in the subsurface and deep sea. However, the composition of this major N pool, as well as the reasons for its accumulation and persistence, are not understood.

View Article and Find Full Text PDF

Gallium trichloride (GaCl) was used as a solvent for the oxidative dissolution of the lanthanide (Ln) metals cerium (Ce) and holmium (Ho). Reactions were performed at temperatures above 100 °C in sealed vessels to maintain the liquid phase for GaCl during the oxidizing reactions. The best results were obtained from reactions using 8 equiv of GaCl to metal where the inorganic complexes [Ga][Ln(GaCl)] [Ln = Ce (), Ho ()] could be isolated.

View Article and Find Full Text PDF

There is growing interest in using low-field magnetic resonance experiments for routine chemical characterization. Earth's field NMR is one such technique that can garner structural information and enable sample differentiation with low cost and highly portable designs. The resulting NMR spectra are primarily influenced by J-couplings, resulting in so-called J-coupled spectra (JCS).

View Article and Find Full Text PDF

Deciphering the solution chemistry and speciation of actinides is inherently difficult due to radioactivity, rarity, and cost constraints, especially for transplutonium elements. In this context, the development of new chelating platforms for actinides and associated spectroscopic techniques is particularly important. In this study, we investigate a relatively overlooked class of chelators for actinide binding, namely, polyoxometalates (POMs).

View Article and Find Full Text PDF

Metal boride nanostructures have shown significant promise for hydrogen storage applications. However, the synthesis of nanoscale metal boride particles is challenging because of their high surface energy, strong inter- and intraplanar bonding, and difficult-to-control surface termination. Here, it is demonstrated that mechanochemical exfoliation of magnesium diboride in zirconia produces 3-4 nm ultrathin MgB nanosheets (multilayers) in high yield.

View Article and Find Full Text PDF

The synthesis and study of radioactive compounds are both inherently limited by their toxicity, cost and isotope scarcity. Traditional methods using small inorganic or organic complexes typically require milligrams of sample-per attempt-which for some isotopes is equivalent to the world's annual supply. Here we demonstrate that polyoxometalates (POMs) enable the facile formation, crystallization, handling and detailed characterization of metal-ligand complexes from microgram quantities owing to their high molecular weight and controllable solubility properties.

View Article and Find Full Text PDF

In situ remediation applications of ammonia (NH) gas have potential for sequestration of subsurface contamination. Ammonia gas injections initially increase the pore water pH leading to mineral dissolution followed by formation of secondary precipitates as the pH is neutralized. However, there is a lack of understanding of fundamental alteration processes due to NH treatment.

View Article and Find Full Text PDF

The highly unfavorable thermodynamics of direct aluminum hydrogenation can be overcome by stabilizing alane within a nanoporous bipyridine-functionalized covalent triazine framework (AlH @CTF-bipyridine). This material and the counterpart AlH @CTF-biphenyl rapidly desorb H between 95 and 154 °C, with desorption complete at 250 °C. Sieverts measurements, Al MAS NMR and Al{ H} REDOR experiments, and computational spectroscopy reveal that AlH @CTF-bipyridine dehydrogenation is reversible at 60 °C under 700 bar hydrogen, >10 times lower pressure than that required to hydrogenate bulk aluminum.

View Article and Find Full Text PDF

A general problem when designing functional nanomaterials for energy storage is the lack of control over the stability and reactivity of metastable phases. Using the high-capacity hydrogen storage candidate LiAlH as an exemplar, we demonstrate an alternative approach to the thermodynamic stabilization of metastable metal hydrides by coordination to nitrogen binding sites within the nanopores of N-doped CMK-3 carbon (NCMK-3). The resulting LiAlH@NCMK-3 material releases H at temperatures as low as 126 °C with full decomposition below 240 °C, bypassing the usual LiAlH intermediate observed in bulk.

View Article and Find Full Text PDF

Uranium contamination of soils and groundwater in the United States represents a significant health risk and will require multiple remediation approaches. Microbial phosphatase activity coupled to the addition of an organic P source has recently been studied as a remediation strategy that provides an extended release of inorganic P (Pi) into U-contaminated sites, resulting in the precipitation of -autunite minerals. Previous laboratory- and field-based biomineralization studies have investigated environments with relatively high U concentrations (>20 μM).

View Article and Find Full Text PDF

Lithium phosphorus oxynitride (LiPON) is an amorphous solid-state lithium ion conductor displaying exemplary cyclability against lithium metal anodes. There is no definitive explanation for this stability due to the limited understanding of the structure of LiPON. Herein, we provide a structural model of RF-sputtered LiPON.

View Article and Find Full Text PDF

Rare earth elements (REEs) are indispensable components of many green technologies and of increasing demand globally. However, refining REEs from raw materials using current technologies is energy intensive and enviromentally damaging. Here, we describe the development of a novel biosorption-based flow-through process for selective REE recovery from electronic wastes.

View Article and Find Full Text PDF

The kinetics of ligand exchange between the free oxalate ion, C O , and the bis-oxalato Np complex, [NpO (C O ) ] , in aqueous solution are reported by using C and O NMR spectroscopy methods. Rates of exchange were measured in the pH regime of 6.5-9.

View Article and Find Full Text PDF

Acetamide diethylphosphonate (AcPhos)-functionalized silica has been shown to have a high affinity for U(vi) in pH 2-3 nitric acid. Previous work with AcPhos-functionalized silica has focused on actinide and lanthanide extraction under various conditions, but has shown poor reproducibility in the functionalization process. For this work, four AcPhos-functionalized SBA-15 materials were synthesized and evaluated based on their U(vi) sorption capacity and their stability in nitric acid.

View Article and Find Full Text PDF

The fundamental interaction of U(vi) with diethylphosphatoethyl triethoxysilane functionalized SBA-15 mesoporous silica is studied by macroscopic batch experiments and solid-state NMR spectroscopy. DPTS-functionalized silica has been shown to extract U(vi) from nitric acid solutions at or above pH 3. Extraction is dependent on pH and ionic strength.

View Article and Find Full Text PDF

Sequestration of trivalent actinides and lanthanides present in used nuclear fuel and legacy wastes is necessary for appropriate long-term stewardship of these metals, particularly to prevent their release into the environment. Organically modified mesoporous silica is an efficient material for recovery and potential subsequent separation of actinides and lanthanides because of its high surface area, tunable ligand selection, and chemically robust substrate. We have synthesized the first novel hybrid material composed of SBA-15 type mesoporous silica functionalized with diglycolamide ligands (DGA-SBA).

View Article and Find Full Text PDF

The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration.

View Article and Find Full Text PDF

Defining chemical and mechanical alteration of wellbore cement by CO(2)-rich brines is important for predicting the long-term integrity of wellbores in geologic CO(2) environments. We reacted CO(2)-rich brines along a cement-caprock boundary at 60 °C and pCO(2) = 3 MPa using flow-through experiments. The results show that distinct reaction zones form in response to reactions with the brine over the 8-day experiment.

View Article and Find Full Text PDF

Beneath the sheets: (31) P NMR data suggests that phosphates are liberated freely in the interlayer of a cobalt-hydroxide water-oxidation catalyst. The cobalt-hydroxide sheets are separated by an interlayer region with water, counterions and phosphate, which help to shuttle protons as the layer develops charge.

View Article and Find Full Text PDF

We report the synthesis of a three-dimensional (3D) macroassembly of graphene sheets with electrical conductivity (∼10(2) S m(-1)) and Young's modulus (∼50 MPa) orders of magnitude higher than those previously reported, super-compressive deformation behavior (∼60% failure strain), and surface areas (>1300 m(2) g(-1)) approaching theoretically maximum values.

View Article and Find Full Text PDF

Environmental and geochemical systems containing paramagnetic species could benefit by using nuclear magnetic resonance (NMR) spectroscopy due to the sensitivity of the spectral response to small amounts paramagnetic interactions. In this study, we apply commonly used solid-state NMR spectroscopic methods combined with chemometrics analysis to probe sorption behavior of the paramagnetic cations Cu(2+) and Ni(2+)at the amorphous silica surface. We exploit the unique properties of paramagnets to derive meaningful structural information in these systems at low, environmentally relevant cation surface loadings by comparing the NMR response of sorption samples to paramagnetic free samples.

View Article and Find Full Text PDF

Pb-containing hydroxylapatite phases synthesized under aqueous conditions were investigated by X-ray diffraction and solid-state nuclear magnetic resonance (NMR) techniques to determine the Pb, Ca distribution. 31P and 1H magic-angle spinning (MAS) NMR results indicate slight shifts of the isotropic chemical shift with increased Ca content and complex lineshapes at compositions with near equal amounts of Ca and Pb. 31P{207Pb} and 1H{207Pb} rotational-echo double resonance (REDOR) results for intermediate compositions show that resolved spectral features cannot be assigned simply in terms of local Ca, Pb configurations or coexisting phases.

View Article and Find Full Text PDF