Feijoa (), also known as pineapple guava, is a member of the Myrtaceae family and is well known for its fruit. Chemical profiling of the different tissues of the feijoa plant has shown that they generate an array of useful bioactive compounds which have health benefits such as significant antioxidant activities. In this study, an culture system has been developed, which could be explored to extract high-value bioactive compounds from feijoa.
View Article and Find Full Text PDFThis study investigates the reduction of aflatoxin M1 (AFM1) in skim milk by using ultraviolet light at 254 nm and the effects of influencing factors on the efficacy including treatment time (min), depth of samples (mm), contamination level (μg L), stirring, temperature, and fat content in milk. The colour and pH of milk samples were measured to evaluate the influence of the treatment on these values. It was found that short-wave ultraviolet radiation (UVC) reduced up to 50% of AFM1 in milk after 20 min of treatment regardless of the initial AFM1 contamination level.
View Article and Find Full Text PDFThe synthesis of analogues of natural enzyme substrates can be used to help deduce enzymatic mechanisms. N-Acetylmannosamine-6-phosphate 2-epimerase is an enzyme in the bacterial sialic acid catabolic pathway. To investigate whether the mechanism of this enzyme involves a re-protonation mechanism by the same neighbouring lysine that performed the deprotonation or a unique substrate-assisted proton displacement mechanism involving the substrate C5 hydroxyl, the syntheses of two analogues of the natural substrate, N-acetylmannosamine-6-phosphate, are described.
View Article and Find Full Text PDFThe parasitic trypanosomes Trypanosoma brucei and T. cruzi are responsible for significant human suffering in the form of human African trypanosomiasis (HAT) and Chagas disease. Drugs currently available to treat these neglected diseases leave much to be desired.
View Article and Find Full Text PDFThe first systematic investigation into the Baeyer-Villiger reaction of an anthraquinone is presented. The double Baeyer-Villiger reaction of quinizarin dimethyl ether is viable, directly providing the dibenzo[b,f][1,4]-dioxocin-6,11-dione ring-system, which is otherwise difficult to prepare. This methodology provides rapid access to 1,2,3,4-tetraoxygenated benzenes, and has been exploited by application to the total synthesis of a natural occurring benzodioxole and its biphenyl dimer, which both display noteworthy biological activity.
View Article and Find Full Text PDF