African trypanosomes are evolutionarily highly divergent parasitic protozoa, and as a consequence the vast majority of trypanosome membrane proteins remain uncharacterised in terms of location, trafficking or function. Here we describe a novel family of type I membrane proteins which we designate 'invariant glycoproteins' (IGPs). IGPs are trypanosome-restricted, with extensive, lineage-specific paralogous expansions in related taxa.
View Article and Find Full Text PDFThe cell surface of Trypanosoma brucei, like many protistan blood parasites, is crucial for mediating host-parasite interactions and is instrumental to the initiation, maintenance and severity of infection. Previous comparisons with the related trypanosomatid parasites T. cruzi and Leishmania major suggest that the cell-surface proteome of T.
View Article and Find Full Text PDFAfrican trypanosomes are capable of both pyrimidine biosynthesis and salvage of preformed pyrimidines from the host. However, uptake of pyrimidines in bloodstream form trypanosomes has not been investigated, making it difficult to judge the relative importance of salvage and synthesis or to design a pyrimidine-based chemotherapy. Detailed characterization of pyrimidine transport activities in bloodstream form Trypanosoma brucei brucei found that these cells express a high-affinity uracil transporter (designated TbU3) that is clearly distinct from the procyclic pyrimidine transporters.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2012
Antigenic variation enables pathogens to avoid the host immune response by continual switching of surface proteins. The protozoan blood parasite Trypanosoma brucei causes human African trypanosomiasis ("sleeping sickness") across sub-Saharan Africa and is a model system for antigenic variation, surviving by periodically replacing a monolayer of variant surface glycoproteins (VSG) that covers its cell surface. We compared the genome of Trypanosoma brucei with two closely related parasites Trypanosoma congolense and Trypanosoma vivax, to reveal how the variant antigen repertoire has evolved and how it might affect contemporary antigenic diversity.
View Article and Find Full Text PDFMost trypanosomatid parasites have both arthropod and mammalian or plant hosts, and the ability to survive and complete a developmental program in each of these very different environments is essential for life cycle progression and hence being a successful pathogen. For African trypanosomes, where the mammalian stage is exclusively extracellular, this presents specific challenges and requires evasion of both the acquired and innate immune systems, together with adaptation to a specific nutritional environment and resistance to mechanical and biochemical stresses. Here we consider the basis for these adaptations, the specific features of the mammalian infective trypanosome that are required to meet these challenges, and how these processes both inform on basic parasite biology and present potential therapeutic targets.
View Article and Find Full Text PDF