Adv Exp Med Biol
November 2011
We study the emergent properties of an artificial neural network which combines segmentation by oscillations and biased competition for perceptual processing. The aim is to progress in image segmentation by mimicking abstractly the way how the cerebral cortex works. In our model, the neurons associated with features belonging to an object start to oscillate synchronously, while competing objects oscillate with an opposing phase.
View Article and Find Full Text PDFWe present an example of exploratory data analysis of climate measurements using a recently developed denoising source separation (DSS) framework. We analyzed a combined dataset containing daily measurements of three variables: surface temperature, sea level pressure and precipitation around the globe, for a period of 56 years. Components exhibiting slow temporal behavior were extracted using DSS with linear denoising.
View Article and Find Full Text PDFIEEE Trans Neural Netw
July 2004
The bits-back coding first introduced by Wallace in 1990 and later by Hinton and van Camp in 1993 provides an interesting link between Bayesian learning and information-theoretic minimum-description-length (MDL) learning approaches. The bits-back coding allows interpreting the cost function used in the variational Bayesian method called ensemble learning as a code length in addition to the Bayesian view of misfit of the posterior approximation and a lower bound of model evidence. Combining these two viewpoints provides interesting insights to the learning process and the functions of different parts of the model.
View Article and Find Full Text PDFChanges in a dynamical process are often detected by monitoring selected indicators directly obtained from the process observations, such as the mean values or variances. Standard change detection algorithms such as the Shewhart control charts or the cumulative sum (CUSUM) algorithm are often based on such first- and second-order statistics. Much better results can be obtained if the dynamical process is properly modeled, for example by a nonlinear state-space model, and then the accuracy of the model is monitored over time.
View Article and Find Full Text PDFIn this paper, we demonstrate that independent component analysis, a novel signal processing technique, is a powerful method for separating artefacts from astrophysical image data. When studying far-out galaxies from a series of consequent telescope images, there are several sources for artefacts that influence all the images, such as camera noise, atmospheric fluctuations and disturbances, cosmic rays, and stars in our own galaxy. In the analysis of astrophysical image data it is very important to implement techniques which are able to detect them with great accuracy, to avoid the possible physical events from being eliminated from the data along with the artefacts.
View Article and Find Full Text PDF