Publications by authors named "Harpreet S Sawhney"

The lack of large-scale real datasets with annotations makes transfer learning a necessity for video activity understanding. We aim to develop an effective method for few-shot transfer learning for first-person action classification. We leverage independently trained local visual cues to learn representations that can be transferred from a source domain, which provides primitive action labels, to a different target domain - using only a handful of examples.

View Article and Find Full Text PDF

This paper proposes a novel unsupervised algorithm learning discriminative features in the context of matching road vehicles between two non-overlapping cameras. The matching problem is formulated as a same-different classification problem, which aims to compute the probability of vehicle images from two distinct cameras being from the same vehicle or different vehicle(s). We employ a novel measurement vector that consists of three independent edge-based measures and their associated robust measures computed from a pair of aligned vehicle edge maps.

View Article and Find Full Text PDF

This paper addresses the problem of matching vehicles across multiple sightings under variations in illumination and camera poses. Since multiple observations of a vehicle are separated in large temporal and/or spatial gaps, thus prohibiting the use of standard frame-to-frame data association, we employ features extracted over a sequence during one time interval as a vehicle fingerprint that is used to compute the likelihood that two or more sequence observations are from the same or different vehicles. Furthermore, since our domain is aerial video tracking, in order to deal with poor image quality and large resolution and quality variations, our approach employs robust alignment and match measures for different stages of vehicle matching.

View Article and Find Full Text PDF

We propose a new method for rapid 3D object indexing that combines feature-based methods with coarse alignment-based matching techniques. Our approach achieves a sublinear complexity on the number of models, maintaining at the same time a high degree of performance for real 3D sensed data that is acquired in largely uncontrolled settings. The key component of our method is to first index surface descriptors computed at salient locations from the scene into the whole model database using the Locality Sensitive Hashing (LSH), a probabilistic approximate nearest neighbor method.

View Article and Find Full Text PDF

Histograms of shape signature or prototypical shapes, called shapemes, have been used effectively in previous work for 2D/3D shape matching and recognition. We extend the idea of shapeme histogram to recognize partially observed query objects from a database of complete model objects. We propose representing each model object as a collection of shapeme histograms and match the query histogram to this representation in two steps: 1) compute a constrained projection of the query histogram onto the subspace spanned by all the shapeme histograms of the model and 2) compute a match measure between the query histogram and the projection.

View Article and Find Full Text PDF