Background: Potential failing adult brain sites, stratified by risk, mediating Sudden Unexpected Death in Epilepsy (SUDEP) have been described, but are unknown in children.
Methods: We examined regional brain volumes using T1-weighted MRI images in 21 children with epilepsy at high SUDEP risk and 62 healthy children, together with SUDEP risk scores, calculated from focal seizure frequency. Gray matter tissue type was partitioned, maps normalized, smoothed, and compared between groups (SPM12; ANCOVA; covariates, age, sex, and BMI).
The failure of chemoreflexes, arousal, and/or autoresuscitation to asphyxia may underlie some sudden infant death syndrome (SIDS) cases. In Part I, we showed that some SIDS infants had altered 5-hydroxytryptamine (5-HT)2A/C receptor binding in medullary nuclei supporting chemoreflexes, arousal, and autoresuscitation. Here, using the same dataset, we tested the hypotheses that the prevalence of low 5-HT1A and/or 5-HT2A/C receptor binding (defined as levels below the 95% confidence interval of controls-a new approach), and the percentages of nuclei affected are greater in SIDS versus controls, and that the distribution of low binding varied with age of death.
View Article and Find Full Text PDFObjectives: Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined the volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by the presence or absence of FBTCS, ictal central apnea (ICA), and post-convulsive central apnea (PCCA).
View Article and Find Full Text PDFPreterm human infants often show periodic breathing (PB) or apnea of prematurity (AOP), breathing patterns which are accompanied by intermittent hypoxia (IH). We examined cause-effect relationships between transient IH and reduced facial bone growth using a rat model. Neonatal pups from 14 timed pregnant Sprague-Dawley rats were randomly assigned to an IH condition, with oxygen altering between 10% and 21% every 4 min for 1 h immediately after birth, or to a litter-matched control group.
View Article and Find Full Text PDFSudden unexpected death in epilepsy (SUDEP) is the leading cause of premature mortality among people with epilepsy. Evidence from witnessed and monitored SUDEP cases indicate seizure-induced cardiovascular and respiratory failures; yet, the underlying mechanisms remain obscure. SUDEP occurs often during the night and early morning hours, suggesting that sleep or circadian rhythm-induced changes in physiology contribute to the fatal event.
View Article and Find Full Text PDFThe focus of my research efforts rests with determining dysfunctional neural systems underlying disorders of sleep, and identifying interventions to overcome those disorders. Aberrant central and physiological control during sleep exerts serious consequences, including disruptions in breathing, motor control, blood pressure, mood, and cognition, and plays a major role in sudden infant death syndrome, congenital central hypoventilation, and sudden unexpected death in epilepsy, among other concerns. The disruptions can be traced to brain structural injury, leading to inappropriate outcomes.
View Article and Find Full Text PDFAlthough the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure.
View Article and Find Full Text PDFObjectives: Sudden unexpected death in epilepsy (SUDEP) is a leading cause of death for patients with epilepsy; however, the pathophysiology remains unclear. Focal-to-bilateral tonic-clonic seizures (FBTCS) are a major risk factor, and centrally-mediated respiratory depression may increase the risk further. Here, we determined volume and microstructure of the amygdala, a key structure that can trigger apnea in people with focal epilepsy, stratified by presence or absence of FBTCS, ictal central apnea (ICA) and post-ictal central apnea (PICA).
View Article and Find Full Text PDFAlthough the mechanisms of sudden unexpected death in epilepsy (SUDEP) are not yet well understood, generalised- or focal-to-bilateral tonic-clonic seizures (TCS) are a major risk factor. Previous studies highlighted alterations in structures linked to cardio-respiratory regulation; one structure, the amygdala, was enlarged in people at high risk of SUDEP and those who subsequently died. We investigated volume changes and the microstructure of the amygdala in people with epilepsy at varied risk for SUDEP since that structure can play a key role in triggering apnea and mediating blood pressure.
View Article and Find Full Text PDFGamma-amino butyric acid (GABA) is well known to help elevate pancreatic β cell vitality and insulin levels in blood. GABA works via a coupling with GABA receptors; thus, the concentration of GABA receptors on the plasma membrane of β cells appears to be critical for insulin regulation. Various medical conditions, such as pediatric and adult obstructive sleep apnea (OSA), show high levels of Type 2 diabetes; such patients also are exposed to intermittent hypoxia (IH), which modifies the GABA levels.
View Article and Find Full Text PDFPatients with epilepsy, who later succumb to sudden unexpected death, show altered brain tissue volumes in selected regions. It is unclear whether the alterations in brain tissue volume represent changes in neurons or glial properties, since volumetric procedures have limited sensitivity to assess the source of volume changes (e.g.
View Article and Find Full Text PDFBackground: The clinical presentation of COVID-19 suggests altered breathing control - tachypnoea, relative lack of dyspnoea, and often a discrepancy between severity of clinical and radiological findings. Few studies characterize and analyse the contribution of breathing drivers and their ventilatory and perceptual responses.
Aim: To establish the prevalence of inappropriate ventilatory and perceptual response in COVID-19, by characterizing the relationships between respiratory rate (RR), dyspnoea and arterial blood gas (ABG) in a cohort of COVID-19 patients at presentation to hospital, and their post-Covid respiratory sequelae at follow-up.
Introduction: Obstructive sleep apnea (OSA) increases sympathetic vasoconstrictor drive and reduces baroreflex sensitivity (BRS), the degree to which blood pressure changes modify cardiac output. Whether nighttime continuous positive airway pressure (CPAP) corrects BRS in the awake state in OSA remains unclear. We assessed spontaneous BRS using non-invasive continuous BP and ECG recordings at rest and during handgrip and Valsalva challenges, maneuvers that increase vasoconstrictor drive with progressively higher BP, in untreated OSA (unOSA), CPAP-treated OSA (cpOSA) and healthy (CON) participants.
View Article and Find Full Text PDFPrevious studies reported that repetitive hypoxia in rat pups reduces insulin secretion and elevates fasting blood glucose levels; these sequelae persisted for several months. This report describes how episodic hypoxic events elevate a chloride ion exporter, K-Cl cotransporter-2 (KCC2), in the plasma membrane of insulin-secreting pancreatic β-cells. We assume that acute diabetic symptoms observed in rat pups with periodic oxygen desaturation could result from a lack of blood insulin levels due to disturbed β-cell function.
View Article and Find Full Text PDFTo characterize regional brain metabolic differences in patients at high risk of sudden unexpected death in epilepsy (SUDEP), using fluorine-18-fluorodeoxyglucose positron emission tomography (FDG-PET). We studied patients with refractory focal epilepsy at high ( = 56) and low ( = 69) risk of SUDEP who underwent interictal FDG-PET as part of their pre-surgical evaluation. Binary SUDEP risk was ascertained by thresholding frequency of focal to bilateral tonic-clonic seizures (FBTCS).
View Article and Find Full Text PDFFront Pediatr
September 2021
Neonatal survival requires precise control of breathing and cardiovascular action, with fatal consequences or severe injury without support. Prematurity presents multiple opportunities to disrupt cardiorespiratory regulation, leading to expressions of apnea of prematurity, periodic breathing, and inappropriate cardiovascular responses to apnea. Failed breathing control can result from altered breathing drives, typically arising from untimely development of sensory or motor coordination processes.
View Article and Find Full Text PDFCerebellar stimulation reduces seizures in animals and in humans with drug-resistant epilepsy. In a pilot safety and feasibility study, we applied continuous cutaneous vibratory stimulation (limb proprioceptive cerebellar stimulation) to foot limb proprioceptive receptors to activate cerebellar, pontine, and thalamic structures in drug-resistant epilepsy patients for 8-h nocturnally up to 6-months after a 4-week pre-treatment control baseline. Seizure frequency was evaluated during the baseline control period, and at 6, 12, and 24 weeks after the control recordings.
View Article and Find Full Text PDFDisruptions in central autonomic processes in people with epilepsy have been studied through evaluation of heart rate variability (HRV). Decreased HRV appears in epilepsy compared to healthy controls, suggesting a shift in autonomic balance toward sympathetic dominance; recent studies have associated HRV changes with seizure severity and outcome of interventions. However, the processes underlying these autonomic changes remain unclear.
View Article and Find Full Text PDFCurrently, there is some ambiguity over the role of postictal generalized electro-encephalographic suppression (PGES) as a biomarker in sudden unexpected death in epilepsy (SUDEP). Visual analysis of PGES, known to be subjective, may account for this. In this study, we set out to perform an analysis of PGES presence and duration using a validated signal processing tool, specifically to examine the association between PGES and seizure features previously reported to be associated with visually analyzed PGES.
View Article and Find Full Text PDFObjectives: Obstructive sleep apnoea (OSA) is a risk factor for hypertension (HTN), but the clinical progression of OSA to HTN is unclear. There are also sex differences in prevalence, screening and symptoms of OSA. Our objective was to estimate the time from OSA to HTN diagnoses in females and males.
View Article and Find Full Text PDFSeizure clusters may be related to Sudden Unexpected Death in Epilepsy (SUDEP). Two or more generalized convulsive seizures (GCS) were captured during video electroencephalography in 7/11 (64%) patients with monitored SUDEP in the MORTEMUS study. It follows that seizure clusters may be associated with epilepsy severity and possibly with SUDEP risk.
View Article and Find Full Text PDFStudy Objectives: Brain regulation of autonomic function in obstructive sleep apnea (OSA) is disrupted in a sex-specific manner, including in the insula, which may contribute to several comorbidities. The insular gyri have anatomically distinct functions with respect to autonomic nervous system regulation; yet, OSA exerts little effect on the organization of insular gyral responses to sympathetic components of an autonomic challenge, the Valsalva. We further assessed neural responses of insular gyri in people with OSA to a static handgrip task, which principally involves parasympathetic withdrawal.
View Article and Find Full Text PDFObjective: To analyze the association between peri-ictal brainstem posturing semiologies with postictal generalized electroencephalographic suppression (PGES) and breathing dysfunction in generalized convulsive seizures (GCS).
Methods: In this prospective, multicenter analysis of GCS, ictal brainstem semiology was classified as (1) decerebration (bilateral symmetric tonic arm extension), (2) decortication (bilateral symmetric tonic arm flexion only), (3) hemi-decerebration (unilateral tonic arm extension with contralateral flexion) and (4) absence of ictal tonic phase. Postictal posturing was also assessed.
Objectives: Hypoxia, or abnormally low blood-oxygen levels, often accompanies seizures and may elicit brain structural changes in people with epilepsy which contribute to central processes underlying sudden unexpected death in epilepsy (SUDEP). The extent to which hypoxia may be related to brain structural alterations in this patient group remains unexplored.
Methods: We analyzed high-resolution T1-weighted magnetic resonance imaging (MRI) to determine brain morphometric and volumetric alterations in people with generalized tonic-clonic seizures (GTCS) recorded during long-term video-electroencephalography (VEEG), recruited from two sites (n = 22), together with data from age- and sex-matched healthy controls (n = 43).