Publications by authors named "Harpa Birgisdottir"

Urban development will increase the demand for new buildings expected to cause significant environmental impacts in the coming decades. Spatiotemporal prediction for new buildings, their typologies, resource quantities and types required for construction, and the associated impacts are crucial to effectively tackle strategies to reduce the related greenhouse gas emissions. Within the context of Denmark, this study establishes a prognosis of expected yearly embedded impacts across the country towards 2050 based on Business as Usual (frozen policy) trends.

View Article and Find Full Text PDF

A new computer-based life-cycle assessment model (EASEWASTE) has been developed to evaluate resource and environmental consequences of solid waste management systems. This paper describes the landfilling sub-model used in the life-cycle assessment program EASEWASTE, and examines some of the implications of this sub-model. All quantities and concentrations of leachate and landfill gas can be modified by the user in order to bring them in agreement with the actual landfill that is assessed by the model.

View Article and Find Full Text PDF

A new computer based life cycle assessment model (EASEWASTE) was used to evaluate a municipal solid waste system with the purpose of identifying environmental benefits and disadvantages by anaerobic digestion of source-separated household waste and incineration. The most important processes that were included in the study are optical sorting and pre-treatment, anaerobic digestion with heat and power recovery, incineration with heat and power recovery, use of digested biomass on arable soils and finally, an estimated surplus consumption of plastic in order to achieve a higher quality and quantity of organic waste to the biogas plant. Results showed that there were no significant differences in most of the assessed environmental impacts for the two scenarios.

View Article and Find Full Text PDF

A new model has been developed for evaluating the overall resource consumption and environmental impacts of municipal solid waste management systems by the use of life cycle assessment. The model is named EASEWASTE (Environmental Assessment of Solid Waste Systems and Technologies) and is able to compare different waste management strategies, waste treatment methods and waste process technologies. The potential environmental impacts can be traced back to the most important processes and waste fractions that contribute to the relevant impacts.

View Article and Find Full Text PDF