Using urine collected from a public restroom at a highway rest stop in Northern California, a full-scale nutrient recovery system involving a two-part system consisting of urine distillation followed by the precipitation of struvite crystals was characterized. The study examined the effects of different operational parameters of the coupled ammonium distillation and struvite process (CADSP) on the composition of struvite crystals and the overall nutrient recovery rates. System inputs that were investigated included the feed:steam (F:S), alkalinity source, and urinary pH.
View Article and Find Full Text PDFIncreasingly stringent limits on nutrient discharges are motivating water resource recovery facilities (WRRFs) to consider the implementation of sidestream nutrient removal or recovery technologies. To further increase biogas production and reduce landfilled waste, WRRFs with excess anaerobic digestion capacity can accept other high-strength organic waste (HSOW) streams. The goal of this study was to characterize and evaluate the life-cycle global warming potential (GWP), eutrophication potential, and economic costs and benefits of sidestream nutrient management and biosolid management strategies following digestion of sewage sludge augmented by HSOW.
View Article and Find Full Text PDFUsing local sources (roof runoff, stormwater, graywater, and onsite wastewater) to meet non-potable water demands can minimize potable water use in buildings and increase supply reliability. In 2017, an Independent Advisory Panel developed a risk-based framework to identify pathogen log reduction targets (LRTs) for onsite non-potable water systems (ONWSs). Subsequently, California's legislature mandated the development and adoption of regulations-including risk-based LRTs-for use in multifamily residential, commercial, and mixed-use buildings.
View Article and Find Full Text PDFMicrobial fuel cells (MFCs) are a promising technology for simultaneous wastewater treatment and the biological conversion of organics to electrical energy. Yet effective MFC utilization of complex waste streams like human urine is limited by interference from high-strength organics (>5000 mg L total organic carbon) and concentrated macronutrients (>500 mg L nitrogen and phosphorus). This research assesses potential gains in MFC energy performance and organics treatment achieved by incorporating MFCs as a tertiary step in a human urine nutrient recovery system.
View Article and Find Full Text PDFIn this study, we examined the total bacterial community associated with ureolytic biomineralization from urine drainage systems. Biomineral samples were obtained from 11 California Department of Transportation public restrooms fitted with waterless, low-flow, or conventional urinals in 2019. Following high throughput 16S rRNA Illumina sequences processed using the DADA2 pipeline, the microbial diversity assessment of 169 biomineral and urine samples resulted in 3,869 reference sequences aggregated as 598 operational taxonomic units (OTUs).
View Article and Find Full Text PDFPopulation growth, the impacts of climate change, and the need for greater water security have made the reuse of wastewater, including potable use, increasingly desirable. As interest in potable reuse of wastewater increases, a variety of processes have been proposed for advanced water treatment following conventional wastewater treatment. In all cases, the operation and performance of advanced water treatment facilities (AWTFs) is improved when the treated wastewater feed is of the highest quality that can be achieved and the advanced water treatment (AWT) processes are operated at a constant flow.
View Article and Find Full Text PDFEmissions of CH4, CO2, and N2O from conventional septic tank systems are known to occur, but there is a dearth of information as to the extent. Mass emission rates of CH4, CO2, and N2O, as measured with a modified flux chamber approach in eight septic tank systems, were determined to be 11, 33.3, and 0.
View Article and Find Full Text PDFClogging in intermittent sand filter (ISF) systems was analyzed using an unsaturated flow model coupled with a reactive transport model. Based on the results of a model sensitivity analysis, several variables were determined to be important in the clogging phenomena observed in ISFs, including hydraulic loading rate, influent chemical oxygen demand (COD) concentration, filter dosing frequency, and time of operation. Several modes of operation were identified that minimize the growth of bacteria at the filter surface.
View Article and Find Full Text PDF