International regulations stipulate that countries need to organize their biosafety and biosecurity systems to minimize the risk of accidental (biosafety) or malicious intentional (biosecurity) release of dangerous pathogens. International Health Regulations (IHR) benchmarks from the WHO state that even for a level of limited capacity countries need to 'Identify and document human and animal health facilities that store/maintain dangerous pathogens and toxins in the relevant sectors and health professionals responsible for them'. This study provides a stepwise, systematic approach and best practices for countries to initiate a national inventory of dangerous pathogens.
View Article and Find Full Text PDFSwimming ponds are artificial ecosystems for bathing in which people imitate the conditions of natural waters. Swimming in natural water may pose health risks if the water quality is microbiologically poor. Swimming ponds are small water bodies that may be used by relatively large groups of people, moreover, the water is not disinfected, e.
View Article and Find Full Text PDFOne of the challenges of global biosecurity is to protect and control dangerous pathogens from unauthorized access and intentional release. A practical and feasible option to protect life science institutes against theft and sabotage, and secure their biological materials against misuse, is to establish a national electronic database with a comprehensive overview of the locations of all controlled dangerous pathogens in a country. This national database could be used as an instrument to secure and account for dangerous pathogens in a country, but it could also assist in establishing a biosecurity assessing and monitoring system for laboratories that work with these controlled biological agents.
View Article and Find Full Text PDFThe importance of vigilance within organizations working with high-risk biological material receives increasing attention. However, an in-depth and comprehensive tool, dedicated to increase awareness of potential risks and to assess an organization's current biosecurity vulnerabilities, has not been available yet. We developed the "Biosecurity Vulnerability Scan," a web tool that identifies biosecurity gaps in an organization based on eight biosecurity pillars of good practice.
View Article and Find Full Text PDFSwimming in fecally contaminated recreational water may lead to gastrointestinal illness. A recreational water-associated outbreak of norovirus (NoV) infections affecting at least 100 people in The Netherlands occurred in August 2012. Questionnaire responses from patients indicated swimming in recreational lake Zeumeren as the most likely cause of illness.
View Article and Find Full Text PDFClinically relevant antimicrobial resistant bacteria, genetic resistance elements, and antibiotic residues (so-called AMR) from human and animal waste are abundantly present in environmental samples. This presence could lead to human exposure to AMR. In 2015, the World Health Organization (WHO) developed a Global Action Plan for Antimicrobial Resistance with one of its strategic objectives being to strengthen knowledge through surveillance and research.
View Article and Find Full Text PDFSlow sand filtration (SSF) in drinking water production removes pathogenic microorganisms, but detection limits and variable operational conditions complicate assessment of removal efficiency. Therefore, a model was developed to predict removal of human pathogenic viruses and bacteria as a function of the operational conditions. Pilot plant experiments were conducted, in which bacteriophage MS2 and Escherichia coli WR1 were seeded as model microorganisms for pathogenic viruses and bacteria onto the filters under various temperatures, flow rates, grain sizes and ages of the Schmutzdecke.
View Article and Find Full Text PDFThe intestinal parasites Cryptosporidium and Giardia are transmitted by water and food and cause human gastroenteritis. Filter-feeding bivalve mollusks, such as oysters and mussels, filter large volumes of water and thus concentrate such pathogens, which makes these bivalves potential vectors of disease. To assess the risk of infection from consumption of contaminated bivalves, parasite numbers and parasite recovery data are required.
View Article and Find Full Text PDFVibrio parahaemolyticus is a common cause of shellfish-related gastroenteritis all over the world. V. parahaemolyticus and Vibrio alginolyticus have previously been detected in water samples from the Oosterschelde, a large inlet on the North Sea, which is used for both recreational purposes and shellfish production.
View Article and Find Full Text PDFNon-travel-related hepatitis E virus (HEV) genotype 3 infections in persons in the Netherlands may have a zoonotic, foodborne, or water-borne origin. Possible reservoirs for HEV transmission by water, food, and animals were studied. HEV genotype 3/open reading frame 2 sequences were detected in 53% of pig farms, 4% of wild boar feces, and 17% of surface water samples.
View Article and Find Full Text PDFDetection of pathogenic viruses in oysters implicated in gastroenteritis outbreaks is often hampered by time-consuming, specialist virus extraction methods. Five virus RNA extraction methods were evaluated with respect to performance characteristics and sensitivity on artificially contaminated oyster digestive glands. The two most promising procedures were further evaluated on bioaccumulated and naturally contaminated oysters.
View Article and Find Full Text PDFThe intestinal parasites Cryptosporidium and Giardia cause gastro-enteritis in humans and can be transmitted via contaminated water. Oysters are filter feeders that have been demonstrated to accumulate pathogens such as Salmonella, Vibrio, norovirus and Cryptosporidium from contaminated water and cause foodborne infections. Oysters are economically important shellfish that are generally consumed raw.
View Article and Find Full Text PDFNoroviruses are the most common agents causing outbreaks of viral gastroenteritis. Outbreaks originating from contaminated drinking water and from recreational waters have been described. Due to a lack of cell culture systems, noroviruses are detected mostly by molecular methods.
View Article and Find Full Text PDFAppl Environ Microbiol
July 2005
Concentration of water samples is a prerequisite for the detection of the low virus levels that are present in water and may present a public health hazard. The aim of this study was to develop a rapid, standardized molecular method for the detection of enteroviruses in large-volume surface water samples, using a concentration method suitable for the detection of infectious viruses as well as virus RNA. Concentration of water was achieved by a conventional filter adsorption-elution method and ultrafiltration, resulting in a 10,000-fold concentration of the sample.
View Article and Find Full Text PDF