Publications by authors named "Harold G Selnick"

A novel series of 3-amino-piperidin-2-one-based calcitonin gene-related peptide (CGRP) receptor antagonists was invented based upon the discovery of unexpected structure-activity observations. Initial exploration of the structure-activity relationships enabled the generation of a moderately potent lead structure (4). A series of modifications, including ring contraction and inversion of stereocenters, led to surprising improvements in CGRP receptor affinity.

View Article and Find Full Text PDF

Deposition of hyperphosphorylated and aggregated tau protein in the central nervous system is characteristic of Alzheimer disease and other tauopathies. Tau is subject to -linked -acetylglucosamine (-GlcNAc) modification, and -GlcNAcylation of tau has been shown to influence tau phosphorylation and aggregation. Inhibition of -GlcNAcase (OGA), the enzyme that removes -GlcNAc moieties, is a novel strategy to attenuate the formation of pathologic tau.

View Article and Find Full Text PDF

Inhibition of O-GlcNAcase (OGA) has emerged as a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Beginning with carbohydrate-based lead molecules, we pursued an optimization strategy of reducing polar surface area to align the desired drug-like properties of potency, selectivity, high central nervous system (CNS) exposure, metabolic stability, favorable pharmacokinetics, and robust in vivo pharmacodynamic response. Herein, we describe the medicinal chemistry and pharmacological studies that led to the identification of (3a,5,6,7,7a)-5-(difluoromethyl)-2-(ethylamino)-3a,6,7,7a-tetrahydro-5-pyrano[3,2-]thiazole-6,7-diol (MK-8719), a highly potent and selective OGA inhibitor with excellent CNS penetration that has been advanced to first-in-human phase I clinical trials.

View Article and Find Full Text PDF

In our efforts to develop CGRP receptor antagonists as backups to MK-3207, 2, we employed a scaffold hopping approach to identify a series of novel oxazolidinone-based compounds. The development of a structurally diverse, potent (20, cAMP+HS IC50=0.67 nM), and selective compound (hERG IC50=19 μM) with favorable rodent pharmacokinetics (F=100%, t1/2=7h) is described.

View Article and Find Full Text PDF

The IC50 of a beta-secretase (BACE-1) lead compound was improved ∼200-fold from 11 μM to 55 nM through the addition of a single methyl group. Computational chemistry, small molecule NMR, and protein crystallography capabilities were used to compare the solution conformation of the ligand under varying pH conditions to its conformation when bound in the active site. Chemical modification then explored available binding pockets adjacent to the ligand.

View Article and Find Full Text PDF

Rational modification of the potent calcitonin gene-related peptide (CGRP) receptor antagonist MK-3207 led to a series of analogues with enhanced CNS penetrance and a convenient chemical handle for introduction of a radiolabel. A number of (11)C-tracers were synthesized and evaluated in vivo, leading to the identification of [(11)C]8 ([(11)C]MK-4232), the first positron emission tomography tracer for the CGRP receptor.

View Article and Find Full Text PDF

A new class of CGRP receptor antagonists was identified by replacing the central amide of a previously identified anilide lead structure with ethylene, ethane, or ethyne linkers. (E)-Alkenes as well as alkynes were found to preserve the proper bioactive conformation of the amides, necessary for efficient receptor binding. Further exploration resulted in several potent compounds against CGRP-R with low susceptibility to P-gp mediated efflux.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) is a potent neuropeptide whose agonist interaction with the CGRP receptor (CGRP-R) in the periphery promotes vasodilation, neurogenic inflammation and trigeminovascular sensory activation. This process is implicated in the cause of migraine headaches, and CGRP-R antagonists in clinical development have proven effective in treating migraine-related pain in humans. CGRP-R is expressed on blood vessel smooth muscle and sensory trigeminal neurons and fibers in the periphery as well as in the central nervous system.

View Article and Find Full Text PDF

Rational modification of the clinically tested CGRP receptor antagonist MK-3207 (3) afforded an analogue with increased unbound fraction in rat plasma and enhanced aqueous solubility, 2-[(8R)-8-(3,5-difluorophenyl)-8-methyl-10-oxo-6,9-diazaspiro[4.5]dec-9-yl]-N-[(6S)-2'-oxo-1',2',5,7-tetrahydrospiro[cyclopenta[b]pyridine-6,3'-pyrrolo[2,3-b]pyridin]-3-yl]acetamide (MK-8825) (6). Compound 6 maintained similar affinity to 3 at the human and rat CGRP receptors but possessed significantly improved in vivo potency in a rat pharmacodynamic model.

View Article and Find Full Text PDF

In our ongoing efforts to develop CGRP receptor antagonists for the treatment of migraine, we aimed to improve upon telecagepant by targeting a compound with a lower projected clinical dose. Imidazoazepanes were identified as potent caprolactam replacements and SAR of the imidazole yielded the tertiary methyl ether as an optimal substituent for potency and hERG selectivity. Combination with the azabenzoxazinone spiropiperidine ultimately led to preclinical candidate 30 (MK-2918).

View Article and Find Full Text PDF

A previously utilized quinoline-for-N-phenylamide replacement strategy was employed against a central amide in a novel class of CGRP receptor antagonists. A unique and unexpected substitution pattern was ultimately required to maintain reasonable affinity for the CGRP receptor, while at the same time predicting acceptable heterocycle positioning for related analogs. Subsequently, specific quinoline and naphthyridine compounds were prepared which supported these structural predictions by displaying CGRP binding affinities in the 0.

View Article and Find Full Text PDF

Incorporation of polar functionality into a series of highly potent calcitonin gene-related peptide (CGRP) receptor antagonists was explored in an effort to improve pharmacokinetics. This strategy identified piperazinone analogues that possessed improved solubility at acidic pH and increased oral bioavailability in monkeys. Further optimization led to the discovery of the clinical candidate 2-[(8R)-8-(3,5-difluorophenyl)-10-oxo-6,9-diazaspiro[4.

View Article and Find Full Text PDF

A novel series of potent CGRP receptor antagonists containing a central quinoline ring constraint was identified. The combination of the quinoline constraint with a tricyclic benzimidazolinone left hand fragment produced an analog with picomolar potency (14, CGRP K(i)=23 pM). Further optimization of the tricycle produced a CGRP receptor antagonist that exhibited subnanomolar potency (19, CGRP K(i)=0.

View Article and Find Full Text PDF

The optimization of tertiary carbinamine derived inhibitors of BACE1 from its discovery as an unstable lead to low nanomolar cell active compounds is described. Five-membered heterocycles are reported as stable and potency enhancing linkers. In the course of this work, we have discovered a clear trend where the activity of inhibitors at a given assay pH is dependent on pK(a) of the amino group that interacts directly with the catalytic aspartates.

View Article and Find Full Text PDF

Calcitonin gene-related peptide (CGRP) has long been hypothesized to play a key role in migraine pathophysiology, and the advent of small-molecule antagonists has clearly demonstrated a clinical link between blocking the CGRP receptor and migraine efficacy. 2-[(8R)-8-(3,5-Difluorophenyl)-10-oxo-6,9-diazaspiro[4.5]dec-9-yl]-N-[(2R)-2'-oxo-1,1',2',3-tetrahydrospiro[indene-2,3'-pyrrolo[2,3-b]pyridin]-5-yl]acetamide (MK-3207) represents the third CGRP receptor antagonist to display clinical efficacy in migraine trials.

View Article and Find Full Text PDF

A novel class of CGRP receptor antagonists was rationally designed by modifying a highly potent, but structurally complex, CGRP receptor antagonist. Initial modifications focused on simplified structures, with increased flexibility. Subsequent to the preparation of a less-potent but more flexible lead, classic medicinal chemistry methods were applied to restore high affinity (compound 22, CGRP Ki=0.

View Article and Find Full Text PDF

beta-Site amyloid precursor protein (APP)-cleaving enzyme (BACE) 1 cleavage of amyloid precursor protein is an essential step in the generation of the potentially neurotoxic and amyloidogenic A beta 42 peptides in Alzheimer's disease. Although previous mouse studies have shown brain A beta lowering after BACE1 inhibition, extension of such studies to nonhuman primates or man was precluded by poor potency, brain penetration, and pharmacokinetics of available inhibitors. In this study, a novel tertiary carbinamine BACE1 inhibitor, tertiary carbinamine (TC)-1, was assessed in a unique cisterna magna ported rhesus monkey model, where the temporal dynamics of A beta in cerebrospinal fluid (CSF) and plasma could be evaluated.

View Article and Find Full Text PDF

A high-throughput screen at 100 microM inhibitor concentration for the BACE-1 enzyme revealed a novel spiropiperidine iminohydantoin aspartyl protease inhibitor template. An X-ray cocrystal structure with BACE-1 revealed a novel mode of binding whereby the inhibitor interacts with the catalytic aspartates via bridging water molecules. Using the crystal structure as a guide, potent compounds with good brain penetration were designed.

View Article and Find Full Text PDF

This Letter describes the design and synthesis of tertiary carbinamine macrocyclic inhibitors of the beta-secretase (BACE-1) enzyme. These macrocyclic inhibitors, some of which incorporate novel P2 substituents, display a 2- to 100-fold increase in potency relative to the previously described acyclic analogs while affording greater stability.

View Article and Find Full Text PDF

A series of low-molecular weight 2,6-diamino-isonicotinamide BACE-1 inhibitors containing an amine transition-state isostere were synthesized and shown to be highly potent in both enzymatic and cell-based assays. These inhibitors contain a trans-S,S-methyl cyclopropane P(3) which bind BACE-1 in a 10s-loop down conformation giving rise to highly potent compounds with favorable molecular weight and moderate to high susceptibility to P-glycoprotein (P-gp) efflux.

View Article and Find Full Text PDF

We describe the discovery and optimization of tertiary carbinamine derived inhibitors of the enzyme beta-secretase (BACE-1). These novel non-transition-state-derived ligands incorporate a single primary amine to interact with the catalytic aspartates of the target enzyme. Optimization of this series provided inhibitors with intrinsic and functional potency comparable to evolved transition state isostere derived inhibitors of BACE-1.

View Article and Find Full Text PDF

BACE-1 is a flexible enzyme with experimentally determined motion in the flap region, the catalytic aspartates, and the 10s loop. Four in-house crystallographically determined complexes of tertiary carbinamine inhibitors revealed 10s loop motion in the S(3) pocket. These X-ray structures were used to correlate K(i) values, which span over five orders of magnitude, with the calculated interaction energy, using the Merck Molecular Force Field for a series of 19 tertiary carbinamine inhibitors.

View Article and Find Full Text PDF

In this study, we have demonstrated that the critical hydrogen bonding motif of the established 3-aminopyrazinone thrombin inhibitors can be effectively mimicked by a 2-aminopyridine N-oxide. As this peptidomimetic core is more resistant toward oxidative metabolism, it also overcomes the metabolic liability associated with the pyrazinones. An optimization study of the P(1) benzylamide delivered the potent thrombin inhibitor 21 (K(i) = 3.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: