Publications by authors named "Harold Coleman"

The last pregnancy trimester is critical for fetal brain development but is a vulnerable period if the pregnancy is compromised by fetal growth restriction (FGR). The impact of FGR on the maturational development of neuronal morphology is not known, however, studies in fetal sheep allow longitudinal analysis in a long gestation species. Here we compared hippocampal neuron dendritogenesis in FGR and control fetal sheep at three timepoints equivalent to the third trimester of pregnancy, complemented by magnetic resonance image for brain volume, and electrophysiology for synaptic function.

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterized by social deficits, repetitive behaviours and lack of empathy. Its significant genetic heritability and potential comorbidities often lead to diagnostic and therapeutic challenges. This review addresses the biological basis of ASD, focusing on the sex differences in gene expression and hormonal influences.

View Article and Find Full Text PDF

The composition, elasticity, and organization of the extracellular matrix within the central nervous system contribute to the architecture and function of the brain. From an in vitro modeling perspective, soft biomaterials are needed to mimic the 3D neural microenvironments. While many studies have investigated 3D culture and neural network formation in bulk hydrogel systems, these approaches have limited ability to position cells to mimic sophisticated brain architectures.

View Article and Find Full Text PDF

The electrical and biological interfacial properties of invasive electrodes have a significant impact on the performance and longevity of neural recordings in the brain. In this study, we demonstrated rapid electrophoretic deposition and electrochemical reduction of graphene oxide (GO) on metal-based neural electrodes. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other characterizations confirmed the existence of a uniform and effectively reduced graphene oxide coating.

View Article and Find Full Text PDF

Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity.

View Article and Find Full Text PDF

A synthetic strategy for conjugating small molecules and peptide-based therapeutics, via a cleavable ester bond, to a lipidated β-tripeptide is presented. The drug-loaded β-peptide was successfully co-assembled with a functionally inert lipidated β-tripeptide to form a hydrogel. Quantitative release of lactose from the hydrogel, by the action of serum esterases, is demonstrated over 28 days.

View Article and Find Full Text PDF
Article Synopsis
  • Peptide self-assembly is used to create biocompatible biomaterials that mimic natural proteins for applications in biotechnology.
  • The study introduces a new β-amino acid that enables the creation of a trifunctional β-tripeptide, which retains its ability to self-assemble despite having bulky sidechains.
  • These novel β-tripeptides serve as bioactive scaffolds, showing potential for promoting neuronal cell growth and supporting research in neuronal development.
View Article and Find Full Text PDF

Autism spectrum disorders (ASD) are highly heritable neurodevelopmental disorders with significant genetic heterogeneity. Noncoding microRNAs (miRNAs) are recognised as playing key roles in development of ASD albeit the function of these regulatory genes remains unclear. We previously conducted whole-exome sequencing of Australian families with ASD and identified four novel single nucleotide variations in mature miRNA sequences.

View Article and Find Full Text PDF

Although misfolding of normal prion protein (PrPC) into abnormal conformers (PrPSc) is critical for prion disease pathogenesis our current understanding of the underlying molecular pathophysiology is rudimentary. Exploiting an electrophysiology paradigm, herein we report that at least modestly proteinase K (PK)-resistant PrPSc (PrPres) species are acutely synaptotoxic. Brief exposure to ex vivo PrPSc from two mouse-adapted prion strains (M1000 and MU02) prepared as crude brain homogenates (cM1000 and cMU02) and cell lysates from chronically M1000-infected RK13 cells (MoRK13-Inf) caused significant impairment of hippocampal CA1 region long-term potentiation (LTP), with the LTP disruption approximating that reported during the evolution of murine prion disease.

View Article and Find Full Text PDF

Electroactive materials have been investigated as next-generation neuronal tissue engineering scaffolds to enhance neuronal regeneration and functional recovery after brain injury. Graphene, an emerging neuronal scaffold material with charge transfer properties, has shown promising results for neuronal cell survival and differentiation in vitro. In this in vivo work, electrospun microfiber scaffolds coated with self-assembled colloidal graphene, were implanted into the striatum or into the subventricular zone of adult rats.

View Article and Find Full Text PDF

Nkx2-5 is one of the master regulators of cardiac development, homeostasis and disease. This transcription factor has been previously associated with a suite of cardiac congenital malformations and impairment of electrical activity. When disease causative mutations in transcription factors are considered, NKX2-5 gene dysfunction is the most common abnormality found in patients.

View Article and Find Full Text PDF

The consolidation of short-term memory into long-term memory involves changing protein level and activity for the synaptic plasticity required for long-term potentiation (LTP). AMPA receptor trafficking is a key determinant of LTP and recently ubiquitination by Nedd4 has been shown to play an important role via direct action on the GluA1 subunit, although the physiological relevance of these findings are yet to be determined. We therefore investigated learning and memory in Nedd4(+/-) mice that have a 50% reduction in levels of Nedd4.

View Article and Find Full Text PDF

Human ether-a-go-go-related gene (hERG) potassium channels determine cardiac action potential and contraction duration. Human uterine contractions are underpinned by an action potential that also possesses an initial spike followed by prolonged depolarization. Here we show that hERG channel proteins (α-conducting and β-inhibitory subunits) and hERG currents exist in isolated patch-clamped human myometrial cells.

View Article and Find Full Text PDF

While the impact of alcohol consumption by pregnant women on fetal neurodevelopment has received much attention, the effects on the cardiovascular system are not well understood. We hypothesised that repeated exposure to alcohol (ethanol) in utero would alter fetal arterial reactivity and wall stiffness, key mechanisms leading to cardiovascular disease in adulthood. Ethanol (0.

View Article and Find Full Text PDF

High-fat diet (HFD) feeding causes ghrelin resistance in arcuate neuropeptide Y (NPY)/Agouti-related peptide neurons. In the current study, we investigated the time course over which this occurs and the mechanisms responsible for ghrelin resistance. After 3 weeks of HFD feeding, neither peripheral nor central ghrelin increased food intake and or activated NPY neurons as demonstrated by a lack of Fos immunoreactivity or whole-cell patch-clamp electrophysiology.

View Article and Find Full Text PDF

Intrauterine growth restriction (IUGR) is associated with impaired cardiac function in childhood and is linked to short- and long-term morbidities. Placental dysfunction underlies most IUGR, and causes fetal oxidative stress which may impact on cardiac development. Accordingly, we investigated whether antenatal melatonin treatment, which possesses antioxidant properties, may afford cardiovascular protection in these vulnerable fetuses.

View Article and Find Full Text PDF

Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm) to facilitate aerosolised delivery via the lungs.

View Article and Find Full Text PDF

Modeling of cellular environments with nanofabricated biomaterial scaffolds has the potential to improve the growth and functional development of cultured cellular models, as well as assist in tissue engineering efforts. An understanding of how such substrates may alter cellular function is critical. Highly plastic central nervous system hippocampal cells and non-network forming peripheral nervous system dorsal root ganglion (DRG) cells from embryonic rats were cultured upon laminin-coated degradable polycaprolactone (PCL) and nondegradable polystyrene (PS) electrospun nanofibrous scaffolds with fiber diameters similar to those of neuronal processes.

View Article and Find Full Text PDF

Background: Transplantation of neural stem cells (NSCs) is a promising novel approach to the treatment of neuroinflammatory diseases such as multiple sclerosis (MS). NSCs can be derived from primary central nervous system (CNS) tissue or obtained by neural differentiation of embryonic stem (ES) cells, the latter having the advantage of readily providing an unlimited number of cells for therapeutic purposes. Using a mouse model of MS, we evaluated the therapeutic potential of NSCs derived from ES cells by two different neural differentiation protocols that utilized adherent culture conditions and compared their effect to primary NSCs derived from the subventricular zone (SVZ).

View Article and Find Full Text PDF

People with Down syndrome (DS) exhibit abnormal brain structure. Alterations affecting neurotransmission and signalling pathways that govern brain function are also evident. A large number of genes are simultaneously expressed at abnormal levels in DS; therefore, it is a challenge to determine which gene(s) contribute to specific abnormalities, and then identify the key molecular pathways involved.

View Article and Find Full Text PDF

The recent introduction of technologies capable of reprogramming human somatic cells into induced pluripotent stem (iPS) cells offers a unique opportunity to study many aspects of neurodegenerative diseases in vitro that could ultimately lead to novel drug development and testing. Here, we report for the first time that human dermal fibroblasts from a patient with relapsing-remitting Multiple Sclerosis (MS) were reprogrammed to pluripotency by retroviral transduction using defined factors (OCT4, SOX2, KLF4, and c-MYC). The MSiPS cell lines resembled human embryonic stem (hES) cell-like colonies in morphology and gene expression and exhibited silencing of the retroviral transgenes after four passages.

View Article and Find Full Text PDF