J Biomed Mater Res B Appl Biomater
December 2024
Previous studies report rare occurrences of tibial baseplate fractures following primary total knee arthroplasty (TKA). However, at a microstructural scale, it remains unclear how fatigue models developed in vitro apply to fractures in vivo. In this study, we asked: (1) do any clinical factors differentiate fracture patients from a broader revision sample; and (2) in vivo, how does microstructure influence fatigue crack propagation? We identified three fractured tibial baseplates from an institutional review board exempt implant retrieval program.
View Article and Find Full Text PDFBackground: The non-implanted knee differs in comparison to total knee arthroplasty (TKA) designs, with regard to asymmetry and functionality of the anterior cruciate ligament and the posterior cruciate ligament. While surgeons may choose to implant either posterior stabilized (PS) or bi-cruciate stabilized (BCS) TKAs, substituting for one or both cruciate ligaments, the effects of symmetry versus asymmetry in substituting TKA designs have not been widely analyzed to determine possible benefits. Therefore, the objective of this research study was to determine if either TKA asymmetry and/or anterior ligament stabilization can lead to more normal-like kinematics and clinical benefit for patients.
View Article and Find Full Text PDFThe importance of proper prosthetic placement has been confirmed in numerous studies. The objective of this study was to compare the planned resection angles to the verified intraoperative angles of femoral and tibial varus/valgus, tibial slope, and femoral flexion for each total knee performed using intramedullary (IM) cut guides for both distal femur and proximal tibia cuts. A total of 1,000 total knee arthroplasties (TKAs) were evaluated for this study.
View Article and Find Full Text PDFThe purpose of this study was to assess the biomechanical adaptations prompted by stationary cycling paired with visual feedback of vertical pedal reaction forces during both stationary cycling and overground walking for patients who underwent a total knee arthroplasty (TKA). Specifically, an emphasis on the inter-limb deficits in knee joint biomechanics were examined. Ten patients who underwent a TKA took part in an acute intervention with pre- and post-testing measurements of kinematics (240 Hz) and kinetics (1200 Hz) during stationary cycling and overground walking.
View Article and Find Full Text PDFDue to the high risk of a bilateral total knee arthroplasty (TKR) following unilateral TKR, this study was performed to investigate bilateral TKR patients. Specifically, we examined biomechanical differences between the first replaced and second replaced limbs of bilateral patients. Furthermore, we examined bilateral TKR effects on hip, knee, and ankle biomechanics, compared to the replaced and non-replaced limbs of unilateral patients.
View Article and Find Full Text PDFAlthough knee biomechanics has been examined, hip and ankle biomechanics in incline ramp walking has not been explored for patients with total knee arthroplasty (TKA). The purpose of this study was to investigate the hip and ankle joint kinematic and kinetic biomechanics of different incline slopes for replaced limbs and non-replaced limbs in individuals with TKA compared to healthy controls. Twenty-five patients with TKR and ten healthy controls performed walking trials on four slope conditions of level (0°), 5°, 10° and 15° on a customized instrumented ramp system.
View Article and Find Full Text PDFBackground: Many total knee replacement (TKR) patients need to have a contralateral knee replacement. Biomechanical differences between first and second replaced limbs of bilateral TKR have not been examined during stair negotiation. Additionally, it is unknown whether hip and ankle biomechanics of bilateral patients are altered.
View Article and Find Full Text PDFMany unilateral total knee replacement (TKR) patients will need a contralateral TKR. Differences in knee joint biomechanics between bilateral patients and unilateral patients are not well established. The purpose of this study was to examine knee joint differences in level walking between bilateral and unilateral patients, and asymptomatic controls, using principal component analysis.
View Article and Find Full Text PDFPatient dissatisfaction following total knee replacement (TKR) procedures is likely influenced by both subjective and objective aspects. Increased pain and reduced performance on clinical tests have been shown in persons who are dissatisfied with the outcome of their surgery. However, it is unknown how overground walking kinematics and kinetics might differ in the dissatisfied versus satisfied patients following TKR surgery.
View Article and Find Full Text PDFPurpose: The purpose of this study was to compare knee biomechanics of the replaced limb to the non-replaced limb of total knee replacement (TKR) patients and healthy controls during walking on level ground and on decline surfaces of 5°, 10°, and 15°.
Methods: Twenty-five TKR patients and 10 healthy controls performed 5 walking trials on different decline slopes on a force platform and an instrumented ramp system. Two analyses of variance, 2 × 2 (limb × group) and 2 × 4 (limb × decline slope), were used to examine selected biomechanics variables.
Background: While posterior cruciate-retaining (PCR) implants are a more common total knee arthroplasty (TKA) design, newer bicruciate-retaining (BCR) TKAs are now being considered as an option for many patients, especially those that are younger. While PCR TKAs remove the ACL, the BCR TKA designs keep both cruciate ligaments intact, as it is believed that the resection of the ACL greatly affects the overall kinematic patterns of TKA designs. The objectives of this study are to assess the in vivo kinematics for subjects implanted with either a PCR or BCR TKA and to compare the in vivo kinematic patterns to the normal knee during flexion.
View Article and Find Full Text PDFBackground: Total knee replacement patients have shown reductions in knee flexion range of motion, knee extensor moments, and gait speed during stair ascent and stair descent. However, it is unknown how patients dissatisfied with their total knee replacement differ from those who are satisfied during more difficult activities such as stair negotiation. Therefore, the purpose of this study was to compare knee biomechanics of patients who are dissatisfied with their joint replacement to those who are satisfied and healthy participants during stair negotiation.
View Article and Find Full Text PDFBackground: The JOURNEY II Bi-Cruciate Stabilizing Total Knee System (BLINDED) is a second-generation guided-motion knee implant that has been used in over 100,000 primary total knee arthroplasties (TKAs) worldwide. However, performance information is limited.
Methods: Data for 2059 primary TKAs were abstracted at 7 US and 3 European sites.
The purpose of this study was to investigate knee biomechanics in uphill walking on slopes of 5°, 10° and 15° for total knee replacement (TKR) patients. Twenty-five post-TKR patients and ten healthy controls performed five walking trials on level ground and different slopes on an instrumented ramp system. A 2 × 2 × 4 (limb × group × incline slope) mixed model ANOVA was used to examine selected variables.
View Article and Find Full Text PDFBackground: The purpose of this study was to determine the incidence of metal release in contemporary total knee arthroplasty and the patient-related factors associated with this release.
Methods: In total, 256 retrieved cobalt-chromium femoral components were collected through a multi-institutional orthopedic implant retrieval program (implanted: 1-15 years). Implants were mainly revised for loosening (84/256), instability (62/256), and infection (46/256).
Background: The bicruciate stabilized (BCS) total knee arthroplasty (TKA) features asymmetrical bearing geometry and dual substitution for the anterior cruciate ligament and posterior cruciate ligament (PCL). Previous TKA designs have not fully replicated normal knee motion, and they are characterized by lower magnitudes of overall rollback and axial rotation than the normal knee.
Methods: In vivo kinematics were derived for 10 normal knees and 40-second generation BCS TKAs all implanted by a single surgeon.
Background: Increased peak external knee adduction moments exist for individuals with knee osteoarthritis and varus knee alignments, compared to healthy and neutrally aligned counterparts. Walking with increased toe-in or increased step width have been individually utilized to successfully reduce 1st and 2nd peak knee adduction moments, respectfully, but have not previously been combined or tested among all alignment groups. The purpose of this study was to compare toe-in only and toe-in with wider step width gait modifications in individuals with neutral, valgus, and varus alignments.
View Article and Find Full Text PDFBackground: During revision surgery with a well-fixed stem, a titanium sleeve can be used in conjunction with a ceramic head to achieve better stress distribution across the taper surface. In vitro testing suggests that corrosion is not a concern in sleeved ceramic heads; however, little is known about the in vivo fretting corrosion of the sleeves. The purpose of this study was to investigate fretting corrosion in sleeved ceramic heads in retrieved total hip arthroplasties.
View Article and Find Full Text PDFBackground: Previous studies identified imprinting of the stem morphology onto the interior head bore, leading researchers to hypothesize an influence of taper topography on mechanically assisted crevice corrosion. The purpose of this study was to analyze whether microgrooved stem tapers result in greater fretting corrosion damage than smooth stem tapers.
Methods: A matched cohort of 120 retrieved head-stem pairs from metal-on-polyethylene bearings was created controlling for implantation time, flexural rigidity, apparent length of engagement, and head size.
Total knee replacement (TKR) is commonly used to correct end-stage knee osteoarthritis. Unfortunately, difficulty with stair climbing often persists and prolongs the challenges of TKR patents. Complete understanding of loading at the knee is of great interest in order to aid patient populations, implant manufacturers, rehabilitation, and future healthcare research.
View Article and Find Full Text PDFBackground: Previous fluoroscopic studies, using static C-arm systems, have shown nonnormal kinematic patterns in cruciate-retaining (CR) total knee arthroplasty (TKA). This study compares in vivo the kinematic differences in subjects implanted with single sagittal radius (SR) vs multiradii (MR) CR TKA for various activities using a novel mobile fluoroscopic system.
Methods: Using mobile fluoroscopy and 3D to 2D registration, tibiofemoral kinematics were analyzed for 25 subjects with an SR, symmetrical condylar CR TKA and 25 subjects with an MR, asymmetric condylar CR TKA for three dynamic weight-bearing activities: (1) deep knee bend (DKB), (2) walking up a ramp, and (3) walking down a ramp.
This study compared biomechanics during stair ascent in replaced and non-replaced limbs of total knee arthroplasty (TKA) patients with control limbs of healthy participants. Thirteen TKA patients and fifteen controls performed stair ascent. Replaced and non-replaced knees of TKA patients were less flexed at contact compared to controls.
View Article and Find Full Text PDFBackground: Metal wear and corrosion products generated by hip replacements have been linked to adverse local tissue reactions. Recent investigations of the stem/head taper junction have identified this modular interface as another possible source of metal debris; however, little is known regarding other modular metallic interfaces, their ability to produce metal debris, and possibly to provide insight in the mechanisms that produce metal debris.
Questions/purposes: We asked three questions: (1) can we develop a reliable method to estimate volumetric material loss from the backside taper of modular metal-on-metal liners, (2) do backside tapers of modular metal-on-metal liners show a quantifiable volumetric material loss, and, if so, (3) how do regions of quantitatively identified material loss correspond to visual and microscopic investigations of surface damage?
Methods: Twenty-one cobalt-chromium (CoCr) liners of one design and manufacturer were collected through an institutional review board-approved retrieval program.
The purpose of this study was to characterize the prevalence of taper damage in modular TKA components. One hundred ninety-eight modular components were revised after 3.9±4.
View Article and Find Full Text PDF