Sangivamycin (S) is an adenosine (A) nucleoside analog with low nanomolar antiviral activity against SARS-CoV-2 in vitro. Previously, low nanomolar antiviral efficacy was revealed when tested against multiple viral variants in several cell types. SARS-CoV-2 RNA isolated from live virus infected cells and the virions released from these cells was analyzed by mass spectrometry (MS) for S incorporation.
View Article and Find Full Text PDFSangivamycin is a nucleoside analog that is well tolerated by humans and broadly active against phylogenetically distinct viruses, including arenaviruses, filoviruses, and orthopoxviruses. Here, we show that sangivamycin is a potent antiviral against multiple variants of replicative severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with half-maximal inhibitory concentration in the nanomolar range in several cell types. Sangivamycin suppressed SARS-CoV-2 replication with greater efficacy than remdesivir (another broad-spectrum nucleoside analog).
View Article and Find Full Text PDFRNA represents a potential target for new antiviral therapies, which are urgently needed to address public health threats such as the human immunodeficiency virus (HIV). We showed previously that the interaction between the viral Tat protein and the HIV-1 trans-activation response (TAR) RNA was blocked by TB-CP-6.9a.
View Article and Find Full Text PDFFiloviruses, such as Ebola virus and Marburg virus, are of significant human health concern. From 2013 to 2016, Ebola virus caused 11,323 fatalities in Western Africa. Since 2018, two Ebola virus disease outbreaks in the Democratic Republic of the Congo resulted in 2354 fatalities.
View Article and Find Full Text PDFThe DNA mutagenic enzyme known as APOBEC3G (A3G) plays a critical role in innate immunity to Human Immunodeficiency Virus-1 (HIV-1 ). A3G is a zinc-dependent enzyme that mutates select deoxycytidines (dC) to deoxyuridine (dU) through deamination within nascent single stranded DNA (ssDNA) during HIV reverse transcription. This activity requires that the enzyme be delivered to viral replication complexes by redistributing from the cytoplasm of infected cells to budding virions through what appears to be an RNA-dependent process.
View Article and Find Full Text PDFTrends Biochem Sci
August 2018
The 11-member APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of zinc-dependent cytidine deaminases bind to RNA and single-stranded DNA (ssDNA) and, in specific contexts, modify select (deoxy)cytidines to (deoxy)uridines. In this review, we describe advances made through high-resolution co-crystal structures of APOBECs bound to mono- or oligonucleotides that reveal potential substrate-specific binding sites at the active site and non-sequence-specific nucleic acid binding sites distal to the active site. We also discuss the effect of APOBEC oligomerization on functionality.
View Article and Find Full Text PDFThe infectivity of HIV depends on overcoming APOBEC3 (A3) innate immunity, predominantly through the expression of the viral protein Vif, which induces A3 degradation in the proteasome. Disruption of the functional interactions of Vif enables A3 mutagenesis of the HIV genome during viral replication, which can result in a broadly neutralizing antiviral effect. Vif function requires self-association along with interactions with A3 proteins, protein chaperones, and factors of the ubiquitination machinery and these are described here as a potential platform for novel antiviral drug discovery.
View Article and Find Full Text PDFThe HIV-1 frameshift-stimulating (FSS) RNA, a regulatory RNA of critical importance in the virus' life cycle, has been posited as a novel target for anti-HIV drug development. We report the synthesis and evaluation of triazole-containing compounds able to bind the FSS with high affinity and selectivity. Readily accessible synthetically, these compounds are less toxic than previously reported olefin congeners.
View Article and Find Full Text PDFAPOBEC3G (A3G) belongs to the AID/APOBEC protein family of cytidine deaminases (CDA) that bind to nucleic acids. A3G mutates the HIV genome by deamination of dC to dU, leading to accumulation of virus-inactivating mutations. Binding to cellular RNAs inhibits A3G binding to substrate single-stranded (ss) DNA and CDA activity.
View Article and Find Full Text PDFRNA Biol
September 2017
Apolipoprotein B mRNA Editing Catalytic Polypeptide-like 1 or APOBEC1 was discovered in 1993 as the zinc-dependent cytidine deaminase responsible for the production of an in frame stop codon in apoB mRNA through modification of cytidine at nucleotide position 6666 to uridine. At the time of this discovery there was much speculation concerning the mechanism of base modification RNA editing which has been rekindled by the discovery of multiple C to U RNA editing events in the 3' UTRs of mRNAs and the finding that other members of the APOBEC family while able to bind RNA, have the biological function of being DNA mutating enzymes. Current research is addressing the mechanism for these nucleotide modification events that appear not to adhere to the mooring sequence-dependent model for APOBEC1 involving the assembly of a multi protein containing editosome.
View Article and Find Full Text PDFCamptothecin (CPT) is a natural product discovered to be active against various cancers through its ability to inhibit Topoisomerase I (TOP1). CPT analogs also have anti-HIV-1 (HIV) activity that was previously shown to be independent of TOP1 inhibition. We show that a cancer inactive CPT analog (O2-16) inhibits HIV infection by disrupting multimerization of the HIV protein Vif.
View Article and Find Full Text PDFThe APOBEC (apolipoprotein B mRNA editing catalytic polypeptide-like) family of proteins have diverse and important functions in human health and disease. These proteins have an intrinsic ability to bind to both RNA and single-stranded (ss) DNA. Both function and tissue-specific expression varies widely for each APOBEC protein.
View Article and Find Full Text PDFThere are eleven members in the human APOBEC family of proteins that are evolutionarily related through their zinc-dependent cytidine deaminase domains. The human APOBEC gene clusters arose on chromosome 6 and 22 through gene duplication and divergence to where current day APOBEC proteins are functionally diverse and broadly expressed in tissues. APOBEC serve enzymatic and non enzymatic functions in cells.
View Article and Find Full Text PDFHuman Immunodeficiency Virus (HIV) type 1 uses a -1 programmed ribosomal frameshift (-1 PRF) event to translate its enzymes from the same transcript used to encode the virus' structural proteins. The frequency of this event is highly regulated, and significant deviation from the normal 5-10% frequency has been demonstrated to decrease viral infectivity. Frameshifting is primarily regulated by the Frameshift Stimulatory Signal RNA (FSS-RNA), a thermodynamically stable, highly conserved stem loop that has been proposed as a therapeutic target.
View Article and Find Full Text PDFAPOBEC3G (A3G) DNA deaminase activity requires a holoenzyme complex whose assembly on nascent viral reverse transcripts initiates with A3G dimers binding to ssDNA followed by formation of higher-order A3G homo oligomers. Catalytic activity is inhibited when A3G binds to RNA. Our prior studies suggested that RNA inhibited A3G binding to ssDNA.
View Article and Find Full Text PDFTrends Biochem Sci
September 2014
HIV-1 viral infectivity factor (Vif) is a viral accessory protein that is required for HIV-1 infection due largely to its role in recruiting antiretroviral factors of the APOBEC3 (apolipoprotein B editing catalytic subunit-like 3) family to an E3 ubiquitin ligase complex for polyubiquitylation and proteasomal degradation. The crystal structure of the (near) full-length Vif protein in complex with Elongin (Elo)B/C, core-binding factor (CBF)β and Cullin (Cul)5 revealed that Vif has a novel structural fold. In our opinion the structural data revealed not only the protein-protein interaction sites that determine Vif stability and interaction with cellular proteins, but also motifs driving Vif homodimerization, which are essential in Vif functionality and HIV-1 infection.
View Article and Find Full Text PDFWiley Interdiscip Rev RNA
March 2015
Cytidine deaminases have important roles in the regulation of nucleoside/deoxynucleoside pools for DNA and RNA synthesis. The APOBEC family of cytidine deaminases (named after the first member of the family that was described, Apolipoprotein B mRNA Editing Catalytic Subunit 1, also known as APOBEC1 or A1) is a fascinating group of mutagenic proteins that use RNA and single-stranded DNA (ssDNA) as substrates for their cytidine or deoxycytidine deaminase activities. APOBEC proteins and base-modification nucleic acid editing have been the subject of numerous publications, reviews, and speculation.
View Article and Find Full Text PDFThe life cycle of the human immunodeficiency virus type 1 (HIV-1) has an absolute requirement for ribosomal frameshifting during protein translation in order to produce the polyprotein precursor of the viral enzymes. While an RNA stem-loop structure (the "HIV-1 Frameshift Stimulating Signal", or HIV-1 FSS) controls the frameshift efficiency and has been hypothesized as an attractive therapeutic target, developing compounds that selectively bind this RNA and interfere with HIV-1 replication has proven challenging. Building on our prior discovery of a "hit" molecule able to bind this stem-loop, we now report the development of compounds displaying high affinity for the HIV-1 FSS.
View Article and Find Full Text PDFAPOBEC1 is a cytidine deaminase that edits messenger RNAs and was the first enzyme in the APOBEC family to be functionally characterized. Under appropriate conditions APOBEC1 also deaminates deoxycytidine in single-stranded DNA (ssDNA). The other ten members of the APOBEC family have not been fully characterized however several have deoxycytidine deaminase activity on ssDNAs.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2011
APOBEC3G (A3G) is a deoxycytidine deaminase active on ssDNA substrates. In HIV infected cells A3G interacted with reverse transcription complexes where its activity as a deoxycytidine deaminase led to mutation of the viral genome. A3G not only bound ssDNA, but it also had an intrinsic ability to bind RNA.
View Article and Find Full Text PDFAPOBEC3G (A3G) is a cytidine deaminase that catalyzes deamination of deoxycytidine (dC) on single-stranded DNA (ssDNA). The oligomeric state of A3G required to support deaminase activity remains unknown. We show under defined in vitro conditions that full-length and native A3G formed complexes with ssDNA in an A3G concentration-dependent but temperature-independent manner.
View Article and Find Full Text PDFAPOBEC3G (A3G) is an effective cellular host defense factor under experimental conditions in which a functional form of the HIV-encoded protein Vif cannot be expressed. Wild-type Vif targets A3G for proteasomal degradation and when this happens, any host defense advantage A3G might provide is severely diminished or lost. Recent evidence cast doubt on the potency of A3G in host defense and suggested that it could, under some circumstances, promote the emergence of more virulent HIV strains.
View Article and Find Full Text PDFAPOBEC-1 Complementation Factor (ACF) is an RNA-binding protein that interacts with apoB mRNA to support RNA editing. ACF traffics between the cytoplasm and nucleus. It is retained in the nucleus in response to elevated serum insulin levels where it supports enhanced apoB mRNA editing.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2010
Apolipoprotein B mRNA is edited at cytidine 6666 in the enterocytes lining the small intestine of all mammals; converting a CAA codon to a UAA stop codon. The conversion is approximately 80% efficient in this tissue and leads to the expression of the truncated protein, ApoB48, essential for secretion of dietary lipid as chylomicrons. Caco-2 cell raft cultures have been used as an in vitro model for the induction of editing activity during human small intestinal cell differentiation.
View Article and Find Full Text PDF