Publications by authors named "Harold B Wolff"

Cell-based computational modeling and simulation are becoming invaluable tools in analyzing plant development. In a cell-based simulation model, the inputs are behaviors and dynamics of individual cells and the rules describing responses to signals from adjacent cells. The outputs are the growing tissues, shapes, and cell-differentiation patterns that emerge from the local, chemical, and biomechanical cell-cell interactions.

View Article and Find Full Text PDF

Background: Metamodeling may substantially reduce the computational expense of individual-level state transition simulation models (IL-STM) for calibration, uncertainty quantification, and health policy evaluation. However, because of the lack of guidance and readily available computer code, metamodels are still not widely used in health economics and public health. In this study, we provide guidance on how to choose a metamodel for uncertainty quantification.

View Article and Find Full Text PDF