Publications by authors named "Harnish Mukesh Naik"

Mammalian cell culture processes are widely utilized for biotherapeutics production, disease diagnostics, and biosensors, and hence, should be optimized to support robust cell growth and viability. However, toxic by-products accumulate in cultures due to inefficiencies in metabolic activities and nutrient utilization. In this study, we applied comprehensive C stable-isotope tracing of amino acids and glucose to two Immunoglobulin G (IgG) producing Chinese Hamster Ovary (CHO) cell lines to identify secreted by-products and trace their origins.

View Article and Find Full Text PDF

Cysteine and cystine are essential amino acids present in mammalian cell cultures. While contributing to biomass synthesis, recombinant protein production, and antioxidant defense mechanisms, cysteine poses a major challenge in media formulations owing to its poor stability and oxidation to cystine, a cysteine dimer. Due to its poor solubility, cystine can cause precipitation of feed media, formation of undesired products, and consequently, reduce cysteine bioavailability.

View Article and Find Full Text PDF

The rapidly growing market of biologics including monoclonal antibodies has stimulated the need to improve biomanufacturing processes including mammalian host systems such as Chinese Hamster Ovary (CHO) cells. Cell culture media formulations continue to be enhanced to enable intensified cell culture processes and optimize cell culture performance. Amino acids, major components of cell culture media, are consumed in large amounts by CHO cells.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cells, predominant hosts for recombinant biotherapeutics production, generate lactate as a major glycolysis by-product. High lactate levels adversely impact cell growth and productivity. The goal of this study was to reduce lactate in CHO cell cultures by adding chemical inhibitors to hexokinase-2 (HK2), the enzyme catalyzing the conversion of glucose to glucose 6-phosphate, and examine their impact on lactate accumulation, cell growth, protein titers, and N-glycosylation.

View Article and Find Full Text PDF

Hydrolysates are used as media supplements although their role is not well characterized. In this study, cottonseed hydrolysates, which contained peptides and galactose as supplemental substrates, were added to Chinese hamster ovary (CHO) batch cultures, enhancing cell growth, immunoglobulin (IgG) titers, and productivities. Extracellular metabolomics coupled with tandem mass tag (TMT) proteomics revealed metabolic and proteomic changes in cottonseed-supplemented cultures.

View Article and Find Full Text PDF

Due to the favorable attributes of Chinese hamster ovary (CHO) cells for therapeutic proteins and antibodies biomanufacturing, companies generate proprietary cells with desirable phenotypes. One key attribute is the ability to stably express multi-gram per liter titers in chemically defined media. Cell, media, and feed diversity has limited community efforts to translate knowledge.

View Article and Find Full Text PDF

Mammalian cell culture processes rely heavily on empirical knowledge in which process control remains a challenge due to the limited characterization/understanding of cell metabolism and inability to predict the cell behaviors. This study facilitates control of Chinese hamster ovary (CHO) processes through a forecast-based feeding approach that predicts multiple essential amino acids levels in the culture from easily acquired viable cell density data. Multiple cell growth behavior forecast extrapolation approaches are considered with logistic curve fitting found to be the most effective.

View Article and Find Full Text PDF

Upstream process development seeks to optimize media formulations to promote robust cell culture conditions and regulate product quality attributes such as glycosylation, aggregation, and charge variants. Transition metal ions Mn, Fe, Cu, and Zn present in cell culture media have a significant impact on cell growth, metabolism and product quality. These metals and other media components can have different chemical associations or speciation in media that are poorly characterized but may significantly impact their properties and effect on cellular performance.

View Article and Find Full Text PDF

Convalescent plasma is a leading treatment for coronavirus disease 2019 (COVID-19), but there is a paucity of data identifying its therapeutic efficacy. Among 126 potential convalescent plasma donors, the humoral immune response was evaluated using a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus neutralization assay with Vero-E6-TMPRSS2 cells; a commercial IgG and IgA ELISA to detect the spike (S) protein S1 domain (EUROIMMUN); IgA, IgG, and IgM indirect ELISAs to detect the full-length S protein or S receptor-binding domain (S-RBD); and an IgG avidity assay. We used multiple linear regression and predictive models to assess the correlations between antibody responses and demographic and clinical characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • * A study evaluated antibody responses in 126 potential donors using various assays, revealing that 80% had detectable neutralizing antibodies, with IgG levels generally higher than IgM or IgA.
  • * Factors like male sex, older age, and hospitalization were linked to stronger antibody responses, indicating they could help identify donors with potentially more effective plasma.
View Article and Find Full Text PDF

Constraint-based modeling has been applied to analyze metabolism of numerous organisms via flux balance analysis and genome-scale metabolic models, including mammalian cells such as the Chinese hamster ovary (CHO) cells-the principal cell factory platform for therapeutic protein production. Unfortunately, the application of genome-scale model methodologies using the conventional biomass objective function is challenged by the presence of overly-restrictive constraints, including essential amino acid exchange fluxes that can lead to improper predictions of growth rates and intracellular flux distributions. In this study, these constraints are found to be reliably predicted by an "essential nutrient minimization" approach.

View Article and Find Full Text PDF

The commercial production of monoclonal antibodies (mAbs) has revolutionized the treatment of many diseases, including cancer, multiple sclerosis, and rheumatoid arthritis. These biotherapeutics have the potential to generate a global annual revenue of more than US$150 billion. Two cell hosts are predominantly utilized to produce these mAbs: Chinese hamster ovary (CHO) cells and murine myeloma cells (NS0).

View Article and Find Full Text PDF