Globally, the prevalence of obesity is increasing which subsequently increases the risk of the development of obesity-related chronic diseases. Low-grade chronic inflammation and dysregulated adipose tissue inflammatory mediator/adipokine secretion are well-established in obesity, and these factors increase the risk of developing inflammation-associated cancer. Breast cancer is of particular interest given that increased inflammation within the subcutaneous mammary adipose tissue depot can alter the local tissue inflammatory microenvironment such that it resembles that of obese visceral adipose tissue.
View Article and Find Full Text PDFMethods Mol Biol
June 2015
Dimerization of receptor tyrosine kinases is a well-characterized process. It is imperative for the activation of many receptors, including the epidermal growth factor receptor (EGFR). EGFR has been shown to be regulated by a number of factors, including lipid raft localization.
View Article and Find Full Text PDFDuring colitis, activation of two inflammatory T cell subsets, Th17 and Th1 cells, promotes ongoing intestinal inflammatory responses. n-6 polyunsaturated fatty acid- (PUFA-) derived eicosanoids, such as prostaglandin E2 (PGE2), promote Th17 cell-mediated inflammation, while n-3 PUFA antagonize both Th17 and Th1 cells and suppress PGE2 levels. We utilized two genetic mouse models, which differentially antagonize PGE2 levels, to examine the effect on Th17 cells and disease outcomes in trinitrobenzene sulfonic acid- (TNBS-) induced colitis.
View Article and Find Full Text PDFLittle is known about the impact of n3 (ω3) PUFAs on polarization of CD4(+) T cells into effector subsets other than Th1 and Th2. We assessed the effects of dietary fat [corn oil (CO) vs. fish oil (FO)] and fermentable fiber [cellulose (C) vs.
View Article and Find Full Text PDFEpidermal growth factor receptor (EGFR)-mediated signaling is required for optimal intestinal wound healing. Since n-3 polyunsaturated fatty acids (PUFA), specifically docosahexaenoic acid (DHA), alter EGFR signaling and suppress downstream activation of key signaling pathways, we hypothesized that DHA would be detrimental to the process of intestinal wound healing. Using a mouse immortalized colonocyte model, DHA uniquely reduced EGFR ligand-induced receptor activation, whereas DHA and its metabolic precursor eicosapentaenoic acid (EPA) reduced wound-induced EGFR transactivation compared with control (no fatty acid or linoleic acid).
View Article and Find Full Text PDFClinical and experimental evidence suggests that obesity-associated inflammation increases disease activity during colitis, attributed in part to the effects of Th17 cells. Using a model of concurrent obesity and colitis, we monitored changes in critical immune cell subsets and inflammatory biomarker expression in three key tissues: visceral adipose tissue, colon (local inflammatory site) and spleen (systemic inflammatory site), and we hypothesized that n-3 PUFA would reduce the percentage of inflammatory immune cell subsets and suppress inflammatory gene expression, thereby improving the disease phenotype. Obesity was induced in C57BL/6 mice by feeding a high fat (HF) diet (59.
View Article and Find Full Text PDFThe epidermal growth factor receptor (EGFR), which regulates cell growth and survival, is integral to colon tumorigenesis. Lipid rafts play a role in regulating EGFR signaling, and docosahexaenoic acid (DHA) is known to perturb membrane domain organization through changes in lipid rafts. Therefore, we investigated the mechanistic link between EGFR function and DHA.
View Article and Find Full Text PDFProstaglandins Leukot Essent Fatty Acids
January 2013
Fish oil, enriched in bioactive n-3 polyunsaturated fatty acids (PUFA), has been shown to play a role in prevention of colon cancer. The effects of n-3 PUFA are pleiotropic and multifaceted, resulting in an incomplete understanding of their molecular mechanisms of action. Here, we focus on a highly conserved mechanism of n-3 PUFA, which is the alteration of the organization of the plasma membrane.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2012
The ligand-activated transcription factor peroxisome proliferator-activated receptor (PPAR)-δ is highly expressed in colonic epithelial cells; however, the role of PPARδ ligands, such as fatty acids, in mucosal inflammation and malignant transformation has not been clarified. Recent evidence suggests that the anti-inflammatory/chemoprotective properties of fish oil (FO)-derived n-3 polyunsaturated fatty acids (PUFAs) may be partly mediated by PPARδ. Therefore, we assessed the role of PPARδ in modulating the effects of dietary n-3 PUFAs by targeted deletion of intestinal epithelial cell PPARδ (PPARδ(ΔIEpC)).
View Article and Find Full Text PDFThe biological properties of polyunsaturated fatty acid (PUFA) classes have been the source of much contention. For example, n-3 PUFA are chemoprotective, whereas n-6 PUFA may promote tumor development. Since dietary components can have combinatorial effects, we further examined the apoptotic properties of n-3 or n-6 fatty acids when combined with different fiber sources.
View Article and Find Full Text PDF