Publications by authors named "Harmison G"

Amyotrophic lateral sclerosis 4 (ALS4) is an autosomal dominant motor neuron disease that is molecularly characterized by reduced R-loop levels and caused by pathogenic variants in (). encodes an RNA/DNA helicase that resolves three-stranded nucleic acid structures called R-loops. Currently, there are no disease-modifying therapies available for ALS4.

View Article and Find Full Text PDF

Hereditary spastic paraplegia (HSP) comprises a large group of neurogenetic disorders characterized by progressive lower extremity spasticity. Neurological evaluation and genetic testing were completed in a Malian family with early-onset HSP. Three children with unaffected consanguineous parents presented with symptoms consistent with childhood-onset complicated HSP.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations in the survival motor neuron 1 () gene. All patients have at least one copy of a paralog, , but a C-to-T transition in this gene results in exon 7 skipping in a majority of transcripts. Approved treatment for SMA involves promoting exon 7 inclusion in the transcript or increasing the amount of full-length SMN by gene replacement with a viral vector.

View Article and Find Full Text PDF

RNA interference via the endogenous miRNA pathway regulates gene expression by controlling protein synthesis through post-transcriptional gene silencing. In recent years, miRNA-mediated gene regulation has shown potential for treatment of neurological disorders caused by a toxic gain of function mechanism. However, efficient delivery to target tissues has limited its application.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy is caused by polyglutamine expansion in the androgen receptor. As an X-linked disease dependent on androgens, symptoms and findings are only fully manifest in males. Here we describe a 40-year-old male-to-female transgender SBMA patient who developed full disease manifestations despite undetectable levels of androgens.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA, also known as Kennedy's disease) is one of nine neurodegenerative disorders that are caused by expansion of polyglutamine-encoding CAG repeats. Intracellular accumulation of abnormal proteins in these diseases, a pathological hallmark, is associated with defects in protein homeostasis. Enhancement of the cellular proteostasis capacity with small molecules has therefore emerged as a promising approach to treatment.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a currently untreatable adult-onset neuromuscular disease caused by expansion of a polyglutamine repeat in the androgen receptor (AR). In SBMA, as in other polyglutamine diseases, a toxic gain of function in the mutant protein is an important factor in the disease mechanism; therefore, reducing the mutant protein holds promise as an effective treatment strategy. In this work, we evaluated a microRNA (miRNA) to reduce AR expression.

View Article and Find Full Text PDF

Importance: The family of genes implicated in hereditary spastic paraplegias (HSPs) is quickly expanding, mostly owing to the widespread availability of next-generation DNA sequencing methods. Nevertheless, a genetic diagnosis remains unavailable for many patients.

Objective: To identify the genetic cause for a novel form of pure autosomal dominant HSP.

View Article and Find Full Text PDF
Article Synopsis
  • Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a motor neuron disease caused by an expansion of polyglutamine repeats in the androgen receptor, leading to degeneration in spinal cord and muscle, though its precise mechanism remains unclear.
  • Induced pluripotent stem cells derived from SBMA patients serve as a valuable model for exploring disease mechanisms and potential therapies; these stem cells exhibited reduced androgen receptor expression but maintained the ability to stabilize and translocate to the nucleus in response to androgens.
  • The findings suggest repeat instability, reduced HDAC6 levels, and altered acetylation patterns in motor neurons might provide new insights into SBMA’s pathology and highlight targets for future therapeutic strategies.
View Article and Find Full Text PDF

Objective: Spinal muscular atrophy (SMA) is one of the most common severe hereditary diseases of infancy and early childhood in North America, Europe, and Asia. SMA is usually caused by deletions of the survival motor neuron 1 (SMN1) gene. A closely related gene, SMN2, modifies the disease severity.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy is an X-linked motor neuron disease caused by polyglutamine expansion in the androgen receptor. Patients develop slowly progressive proximal muscle weakness, muscle atrophy and fasciculations. Affected individuals often show gynecomastia, testicular atrophy and reduced fertility as a result of mild androgen insensitivity.

View Article and Find Full Text PDF

Expanded polyglutamine tracts cause neurodegeneration through a toxic gain-of-function mechanism. Generation of inclusions is a common feature of polyglutamine diseases and other protein misfolding disorders. Inclusion formation is likely to be a defensive response of the cell to the presence of unfolded protein.

View Article and Find Full Text PDF

Spinal and bulbar muscular atrophy (SBMA) is a motor neuron disease caused by polyglutamine expansion mutation in the androgen receptor (AR). We investigated whether the mutant protein alters mitochondrial function. We found that constitutive and doxycycline-induced expression of the mutant AR in MN-1 and PC12 cells, respectively, are associated with depolarization of the mitochondrial membrane.

View Article and Find Full Text PDF

The microtubule motor cytoplasmic dynein and its activator dynactin drive vesicular transport and mitotic spindle organization. Dynactin is ubiquitously expressed in eukaryotes, but a G59S mutation in the p150Glued subunit of dynactin results in the specific degeneration of motor neurons. This mutation in the conserved cytoskeleton-associated protein, glycine-rich (CAP-Gly) domain lowers the affinity of p150Glued for microtubules and EB1.

View Article and Find Full Text PDF

Background: Clinical trials of drugs that increase SMN protein levels in vitro are currently under way in patients with spinal muscular atrophy.

Objective: To develop and validate measures of SMN mRNA and protein in peripheral blood and to establish baseline SMN levels in a cohort of controls, carriers, and patients of known genotype, which could be used to follow response to treatment.

Methods: SMN1 and SMN2 gene copy numbers were determined in blood samples collected from 86 subjects.

View Article and Find Full Text PDF

Background: Efficient targeted gene transfer and cell type specific transgene expression are important for the safe and effective expression of transgenes in vivo. Enveloped viral vectors allow insertion of exogenous membrane proteins into their envelopes, which could potentially aid in the targeted transduction of specific cell types. Our goal was to specifically target cells that express the T cell tropic HIV-1 envelope protein (Env) using the highly specific interaction of Env with its cellular receptor (CD4) inserted into the envelope of an HIV-1-based viral vector.

View Article and Find Full Text PDF

The protein kinase C gamma (PKCgamma) gene is mutated in spinocerebellar ataxia type 14 (SCA14). In this study, we investigated the effects of two SCA14 missense mutations, G118D and C150F, on PKCgamma function. We found that these mutations increase the intrinsic activity of PKCgamma.

View Article and Find Full Text PDF

Kennedy's disease is a degenerative disease of motor neurons in which the causative mutation is expansion of a CAG/polyglutamine tract near the 5' end of the androgen receptor gene. The mutant protein misfolds, aggregates, and interacts abnormally with other proteins, leading to a novel, toxic gain of function and an alteration of normal function. We used a cell culture model to explore the mechanisms underlying the alterations in androgen receptor function conferred by the mutation.

View Article and Find Full Text PDF

Androgens, like other steroid hormones, exert profound effects on cell growth and survival by modulating the expression of target genes. In vertebrates, androgens play a critical role downstream of the testis determination pathway, influencing the expression of sexually dimorphic traits. Among cells of the nervous system, motor neurons respond to trophic effects of androgen stimulation, with a subpopulation of spinal motor neurons exhibiting sexually dimorphic survival.

View Article and Find Full Text PDF

A HeLa T4 cell line containing a defective human immunodeficiency virus type 1 (HIV-1) DNA (HD4) was isolated. After transactivation with Tat, the HD4 DNA was transcribed into a single 3.7-kb mRNA that encodes a chimeric CD4/Env protein and a multitarget-ribozyme directed against multiple sites within the gp120 coding region of HIV-1 RNA (Chen et al.

View Article and Find Full Text PDF

The use of Moloney murine leukemia virus (Mo-MLV)-based vectors to deliver therapeutic genes into target cells is limited by their inability to transduce nondividing cells. To test the capacity of HIV-based vectors to deliver genes into nondividing cells, we have generated replication-defective HIV type 1 (HIV-1) reporter vectors carrying neomycin phosphotransferase or mouse heat stable antigen, replacing the HIV-1 sequences encoding gp160. These vectors also harbor inactive vpr, vpu, and nef coding regions.

View Article and Find Full Text PDF

Besides its role in viral assembly, the vesicular stomatitis virus (VSV) matrix (M) protein causes cytopathic effects such as cell rounding (D. Blondel, G. G.

View Article and Find Full Text PDF

Several mono-, di-, tetra-, penta- and nonaribozymes were developed. These multitarget-ribozymes were targeted to cleave HIV-1 env RNA at up to nine different conserved sites. Each multitarget-ribozyme consisted of a chain of up to nine hammerhead motifs, each flanked by a different targeting sequence.

View Article and Find Full Text PDF

Enveloped virus particles carrying the human immunodeficiency virus (HIV) CD4 receptor may potentially be employed in a targeted antiviral approach. The mechanisms for efficient insertion and the requirements for the functionality of foreign glycoproteins within viral envelopes, however, have not been elucidated. Conditions for efficient insertion of foreign glycoproteins into the vesicular stomatitis virus (VSV) envelope were first established by inserting the wild-type envelope glycoprotein (G) of VSV expressed by a vaccinia virus recombinant.

View Article and Find Full Text PDF