In quantum chromodynamics, a gauge field configuration with nonzero topological charge generates a difference between the number of left- and right-handed quarks. When a (electromagnetic) magnetic field is added to this configuration, an electromagnetic current is induced along the magnetic field; this is called the chiral magnetic effect. We compute this current in the presence of a color-flux tube possessing topological charge, with a magnetic field applied perpendicular to it.
View Article and Find Full Text PDFWe investigate the effect of a magnetic field on cold dense quark matter using an effective model with four-Fermi interactions. We find that the gap parameters representing the predominant pairing between the different quark flavors show oscillatory behavior as a function of the magnetic field. We point out that due to electric and color neutrality constraints the magnetic fields as strong as presumably existing inside magnetars might induce significant deviations from the gap structure at a zero magnetic field.
View Article and Find Full Text PDF