Publications by authors named "Harmeet Sidhu"

Clinical rotations form the foundation of medical education. Medical students in the UK are offered conventional rotations such as cardiology, surgery, and psychiatry as part of their undergraduate curriculum, but a rotation in hematology is not currently mandatory. This paper explores the benefits of a compulsory hematology rotation, and suggests recommendations for its implementation in UK medical school curricula.

View Article and Find Full Text PDF

About 75% of urinary stones contain oxalate. As Oxalobacter formigenes is a Gram-negative anaerobic bacterium that degrades oxalate in the intestinal tract, we assessed the role of O. formigenes in oxalate metabolism by evaluating its intestinal absorption, plasma concentration, and urinary excretion.

View Article and Find Full Text PDF

Oxazyme (OC4) is an orally administered formulation that has as an active component a recombinant mutant form of Bacillus subtilis oxalate decarboxylase (OxDC) enzyme C383S, designed to degrade dietary oxalate in the stomach. Fourteen-day repeat-dose studies were conducted in rats and dogs to evaluate toxicity and determine a no observed adverse effect level (NOAEL). Animals were administered OC4 by oral gavage twice daily for 14 consecutive days.

View Article and Find Full Text PDF

Current treatment options in patients with primary and secondary hyperoxaluria are limited and do not always lead to sufficient reduction in urinary oxalate excretion. Intestinal oxalate degrading bacteria are capable of degrading oxalate to CO(2) and formate, the latter being further metabolized and excreted via the feces. It is speculated, that both endogenously produced, as well as dietary oxalate can be significantly removed via the intestinal tract.

View Article and Find Full Text PDF

Oxalyl-coenzyme A decarboxylase is a thiamin diphosphate dependent enzyme active in the catabolism of the highly toxic compound oxalate. The enzyme from Oxalobacter formigenes has been expressed as a recombinant protein in Escherichia coli, purified to homogeneity and crystallized. Two crystal forms were obtained, one showing poor diffraction and the other merohedral twinning.

View Article and Find Full Text PDF

Background: Hyperoxaluria has been incriminated to account for the increased incidence of urolithiasis or nephrocalcinosis in patients with cystic fibrosis (CF). Hyperoxaluria presumably is caused by fat malabsorption and the absence of such intestinal oxalate-degrading bacteria as Oxalobacter formigenes. To better elucidate its pathophysiological characteristics, we prospectively studied patients with CF by determining these parameters and performing renal ultrasonography twice yearly.

View Article and Find Full Text PDF

Background And Purpose: The long-term placement of biomaterials within the urinary tract is limited by the development of encrustation. In a noninfected urinary environment, encrustation often results from the deposition of calcium oxalate on the biomaterial surface. There is an association between the absence of Oxalobacter formigenes, a commensal colonic bacterium capable of degrading oxalate, and calcium oxalate stone formation.

View Article and Find Full Text PDF

Background And Purpose: Oxalobacter formigenes is an anaerobic commensal colonic bacterium capable of degrading oxalate through the enzyme oxalyl-CoA decarboxylase. It has been theorized that individuals who lack this bacterium have higher intestinal oxalate absorption, leading to a higher urinary oxalate concentration and an increased risk of calcium oxalate urolithiasis. We performed a prospective, controlled study to evaluate O.

View Article and Find Full Text PDF

Urinary biomaterials are compromised by device-related urinary tract infections, bacterial biofilm formation, and biomineral encrustation. In the absence of urinary infection, calcium oxalate is the prevalent encrustation mineral formed. Considering this, a novel approach was taken in the study reported here, in that an oxalate-degrading enzyme, oxalate oxidase (OXO), was immobilized on the surface of silicone elastomer (PDMS), a common urological biomaterial.

View Article and Find Full Text PDF