In interacting dynamical systems, specific local interaction rules for system components give rise to diverse and complex global dynamics. Long dynamical cycles are a key feature of many natural interacting systems, especially in biology. Examples of dynamical cycles range from circadian rhythms regulating sleep to cell cycles regulating reproductive behavior.
View Article and Find Full Text PDFGene expression states persist for varying lengths of time at the single-cell level, a phenomenon known as gene expression memory. When cells switch states, losing memory of their prior state, this transition can occur in the absence of genetic changes. However, we lack robust methods to find regulators of memory or track state switching.
View Article and Find Full Text PDFNon-genetic factors can cause individual cells to fluctuate substantially in gene expression levels over time. It remains unclear whether these fluctuations can persist for much longer than the time of one cell division. Current methods for measuring gene expression in single cells mostly rely on single time point measurements, making the duration of gene expression fluctuations or cellular memory difficult to measure.
View Article and Find Full Text PDFSome exciting biological questions require quantifying thousands of proteins in single cells. To achieve this goal, we develop Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS) and validate its ability to identify distinct human cancer cell types based on their proteomes. We use SCoPE-MS to quantify over a thousand proteins in differentiating mouse embryonic stem cells.
View Article and Find Full Text PDF