Publications by authors named "Harmand J"

This study critically analyses filtration process modeling in membrane bioreactor (MBR) technology. More specifically, the variety of approaches and assumptions considered within a curated selection of resistance-in-series (RIS) filtration models found in the literature is critically assessed. Aimed to move towards good filtration process modeling practices, the basis for establishing a unified framework rooted in the fundamentals of membrane fouling is defined in this work, considering fouling classifications, process dynamics, and underlying processes used by different authors for elucidating membrane fouling phenomena.

View Article and Find Full Text PDF

The optimization of integrated membrane bioreactors (MBRs) models is of paramount importance in view of reducing the costs, greenhouse gas emissions or enhancing the water quality. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the control and optimization of integrated MBR models. Whether aerobic or anaerobic, such modelling allows the consideration of specific functioning conditions and optimization problems together with the estimation and monitoring of Performance Index (PIs).

View Article and Find Full Text PDF

A gallium interstitial defect is thought to be responsible for the spectacular spin-dependent recombination in GaAs_{1-x}N_{x} dilute nitrides. Current understanding associates this defect with at least two in-gap levels corresponding to the (+/0) and (++/+) charge-state transitions. Using a spin-sensitive photoinduced current transient spectroscopy, the in-gap electronic structure of a x=0.

View Article and Find Full Text PDF

A simple model is developed for membrane fouling, taking into account two main fouling phenomena: cake formation, due to attached solids on the membrane surface, and pore clogging, due to retained compounds inside the pores. The model is coupled with a simple anaerobic digestion model for describing the dynamics of an anaerobic membrane bioreactor (AnMBR). In simulations, we investigate its qualitative behavior: it is shown that the model exhibits satisfying properties in terms of a flux decrease due to membrane fouling.

View Article and Find Full Text PDF
Article Synopsis
  • Selective area growth of GaN nanostructures was studied, focusing on the effects of temperature and ammonia flux during hydride vapor phase epitaxy.
  • The research highlighted two growth behaviors in GaN nanowires, including a growth suppression issue that was resolved using a cyclic growth method.
  • A theoretical model was created to explain this growth suppression and various GaN nanocrystal shapes were produced by balancing growth and blocking mechanisms based on temperature and vapor composition, leading to optimal conditions for 5 μm long nanowires.
View Article and Find Full Text PDF

A mathematical correlation between biomass kinetic and membrane fouling can improve the understanding and spread of Membrane Bioreactor (MBR) technology, especially in solving the membrane fouling issues. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the modelling of kinetic processes of biomass, focusing on modelling production and utilization of soluble microbial products (SMP) and extracellular polymeric substances (EPS). The key findings of this work show that the new conceptual approaches focus on the role of different bacterial groups in the formation and degradation of SMP/EPS.

View Article and Find Full Text PDF

Nanowires (NWs) offer unique opportunities for tuning the properties of III-V semiconductors by simultaneously controlling their nanoscale dimensions and switching their crystal phase between zinc-blende (ZB) and wurtzite (WZ). While much of this control has been enabled by direct, forward growth, the reverse reaction, , crystal decomposition, provides very powerful means to further tailor properties towards the ultra-scaled dimensional level. Here, we use transmission electron microscopy (TEM) to investigate the thermal decomposition kinetics of clean, ultrathin GaAs NWs and the role of distinctly different crystal polytypes in real-time and on the atomic scale.

View Article and Find Full Text PDF
Article Synopsis
  • The study hypothesized that nitrogen-fixing trees can enhance the growth and nitrogen nutrition of non-fixing tree species, assessed through soil samples and bioassays at two tropical sites.
  • Despite lower soil nitrogen-mineralization rates in the Congo compared to Brazil, eucalypt seedlings showed greater growth and nitrogen bioavailability in the Congo, suggesting that bioassays are more reliable than N-mineralization rates for predicting seedling growth.
  • The findings indicate that planting nitrogen-fixing trees in the Congo could be beneficial for supporting non-fixing species while reducing the need for chemical fertilizers.
View Article and Find Full Text PDF

With their unique structural, optical and electrical properties, III-V nanowires (NWs) are an extremely attractive option for the direct growth of III-Vs on Si for tandem solar cell applications. Here, we introduce a core-shell GaAs/GaInP NW solar cell grown by molecular beam epitaxy on a patterned Si substrate, and we present an in-depth investigation of its optoelectronic properties and limitations. We report a power conversion efficiency of almost 3.

View Article and Find Full Text PDF

We show that a simple model with a maintenance term can satisfactorily reproduce the simulations of several existing models of wine fermentation from the literature, as well as experimental data. The maintenance describes a consumption of the nitrogen that is not entirely converted into biomass. We show also that considering a maintenance term in the model is equivalent to writing a model with a variable yield that can be estimated from data.

View Article and Find Full Text PDF

The piezoelectric nanowires (NWs) are considered as promising nanomaterials to develop high-efficient piezoelectric generators. Establishing the relationship between their characteristics and their piezoelectric conversion properties is now essential to further improve the devices. However, due to their nanoscale dimensions, the NWs are characterized by new properties that are challenging to investigate.

View Article and Find Full Text PDF

The growth of ZnTe nanowires and ZnTe-CdTe nanowire heterostructures is studied by in situ transmission electron microscopy. We describe the shape and the change of shape of the solid gold nanoparticle during vapor-solid-solid growth. We show the balance between one monolayer and two monolayer steps, which characterizes the vapor-liquid-solid and vapor-solid-solid growth modes of ZnTe.

View Article and Find Full Text PDF

Breakthroughs in cutting-edge research fields such as hetero-integration of materials and the development of quantum devices are heavily bound to the control of misfit strain during heteroepitaxy. While remote epitaxy offers one of the most intriguing avenues, demonstrations of functional hybrid heterostructures are hardly possible without a deep understanding of the nucleation and growth kinetics of 3D crystals on graphene and their mutual interactions. Here, the kinetics of such processes from real-time observations of germanium (Ge) growth on freestanding single layer graphene (SLG) using in-situ transmission electron microscopy are unraveled.

View Article and Find Full Text PDF

Plant diversification through crop rotation or agroforestry is a promising way to improve sustainability of agroecosystems. Nonetheless, criteria to select the most suitable plant communities for agroecosystems diversification facing contrasting environmental constraints need to be refined. Here, we compared the impacts of 24 different plant communities on soil fertility across six tropical agroecosystems: either on highly weathered Ferralsols, with strong P limitation, or on partially weathered soils derived from volcanic material, with major N limitation.

View Article and Find Full Text PDF

As world demand for clean water increases, reverse osmosis (RO) desalination has emerged as an attractive solution. Continuous RO is the most used desalination technology today. However, a new generation of configurations, working in unsteady-state feed concentration and pressure, have gained more attention recently, including the batch RO process.

View Article and Find Full Text PDF

This article deals with the inclusion of microbial ecology measurements such as abundances of operational taxonomic units in bioprocess modelling. The first part presents the mathematical analysis of a model that may be framed within the class of Lotka-Volterra models fitted to experimental data in a chemostat setting where a nitrification process was operated for over 500 days. The limitations and the insights of such an approach are discussed.

View Article and Find Full Text PDF

Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas emissions.

View Article and Find Full Text PDF

The glucose-xylose metabolic transition is of growing interest as a model to explore cellular adaption since these molecules are the main substrates resulting from the deconstruction of lignocellulosic biomass. Here, we investigated the role of the XylR transcription factor in the length of the lag phases when the bacterium needs to adapt from glucose- to xylose-based growth. First, a variety of lag times were observed when different strains of were switched from glucose to xylose.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the electrical and optical properties of single GaN nanowire p-n junctions created through plasma-assisted molecular-beam epitaxy with magnesium and silicon as doping sources.
  • It compares different junction structures (n-base vs. p-base) using various analytical techniques, highlighting that n-base structures display more wire-to-wire shape variation due to radial growth influenced by magnesium doping.
  • By switching to p-base junctions, researchers achieved a more consistent and well-defined structure while maintaining good optical quality and high hole concentration without damaging the nanowire's shape.
View Article and Find Full Text PDF

We revisit the modeling of the diauxic growth of a pure microorganism on two distinct sugars which was first described by Monod. Most available models are deterministic and make the assumption that all cells of the microbial ecosystem behave homogeneously with respect to both sugars, all consuming the first one and then switching to the second when the first is exhausted. We propose here a stochastic model which describes what is called "metabolic heterogeneity".

View Article and Find Full Text PDF

We report the first investigation of indium (In) as the vapor-liquid-solid catalyst of GaP and InGaAs nanowires by molecular beam epitaxy. A strong asymmetry in the Ga distribution between the liquid and solid phases allows one to obtain pure GaP and In0.2Ga0.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of N-fixing trees, specifically Acacia mangium, on phosphorus (P) cycling in long-established eucalypt plantations across two tropical sites (Brazil and the Congo).
  • Soil samples revealed distinct differences in forms of organic phosphorus (Po) and low molecular weight organic acids (LMWOAs) between native ecosystems and the two types of monoculture (acacia and eucalypt), indicating how these tree species affect soil chemistry.
  • The introduction of acacia significantly altered the profile of soil P and LMWOAs in less than a decade, with variations in P cycling mechanisms seen across the two sites; one site showed more physicochemical processes, while the other exhibited biological processes dominating P availability
View Article and Find Full Text PDF

Membrane bioreactor (MBR) models are useful tools for both design and management. The system complexity is high due to the involved number of processes which can be clustered in biological and physical ones. Literature studies are present and need to be harmonized in order to gain insights from the different studies and allow system optimization by applying a control.

View Article and Find Full Text PDF

Microbial transition state theory (MTS) offers a theoretically explicit mathematical model for substrate limited microbial growth. By considering a first order approximation of the MTS equation one recovers the well-known Monod's expression for growth, which was regarded as a purely empirical function. The harvest volume of a cell as defined in MTS theory can then be related to the affinity concept, giving a new physical interpretation to it, and a new way to determine its value.

View Article and Find Full Text PDF

We study mechanisms that can produce an increase of biomass production in batch processes when considering mixed cultures, compared to pure cultures. We show that growth thresholds or variable yields can produce 'overyielding', while this is not possible in the classical batch model with multiple species. We give sufficient conditions on the characteristics of the species to obtain overyielding, and illustrate these theoretical results with numerical simulations.

View Article and Find Full Text PDF