J Stroke Cerebrovasc Dis
August 2021
Purpose: In the past years the significance of white matter hyperintensities (WMH) has gained raising attention because it is considered a marker of severity of different pathologies. Another condition that in the last years has been assessed in the neuroradiology field is cerebral microbleeds (CMB). The purpose of this work was to evaluate the association between the volume of WMH and the presence and characteristics of CMB.
View Article and Find Full Text PDFArtificial Intelligence (AI), in general, refers to the machines (or computers) that mimic "cognitive" functions that we associate with our mind, such as "learning" and "solving problem". New biomarkers derived from medical imaging are being discovered and are then fused with non-imaging biomarkers (such as office, laboratory, physiological, genetic, epidemiological, and clinical-based biomarkers) in a big data framework, to develop AI systems. These systems can support risk prediction and monitoring.
View Article and Find Full Text PDFComput Biol Med
August 2020
Motivation: The early screening of cardiovascular diseases (CVD) can lead to effective treatment. Thus, accurate and reliable atherosclerotic carotid wall detection and plaque measurements are crucial. Current measurement methods are time-consuming and do not utilize the power of knowledge-based paradigms such as artificial intelligence (AI).
View Article and Find Full Text PDFPurpose: It is under debate how white matter hyperintensities (WMH) affects the brain connectivity. The objective of this research study is to validate the hypothesis, if and how the WMH influences brain connectivity in a population with carotid artery stenosis (CAS), which are eligible for carotid endarterectomy (CEA). We used resting state functional connectivity (rs-fc) magnetic resonance (MR) to validate our hypothesis, focusing on the effects of the total number of WMH (TNWMH) and of the WMH Burden (WMHB).
View Article and Find Full Text PDFCarotid intima-media thickness (cIMT) and carotid plaque (CP) currently act as risk predictors for CVD/Stroke risk assessment. Over 2000 articles have been published that cover either use cIMT/CP or alterations of cIMT/CP and additional image-based phenotypes to associate cIMT related markers with CVD/Stroke risk. These articles have shown variable results, which likely reflect a lack of standardization in the tools for measurement, risk stratification, and risk assessment.
View Article and Find Full Text PDFBackground: Stroke is in the top three leading causes of death worldwide. Non-invasive monitoring of stroke can be accomplished via stenosis measurements. The current conventional image-based methods for these measurements are not accurate and reliable.
View Article and Find Full Text PDFBackground: Most cardiovascular (CV)/stroke risk calculators using the integration of carotid ultrasound image-based phenotypes (CUSIP) with conventional risk factors (CRF) have shown improved risk stratification compared with either method. However such approaches have not yet leveraged the potential of machine learning (ML). Most intelligent ML strategies use follow-ups for the endpoints but are costly and time-intensive.
View Article and Find Full Text PDFObjective: A colon microarray data is a repository of thousands of gene expressions with different strengths for each cancer cell. It is necessary to detect which genes are responsible for cancer growth. This study presents an exhaustive comparative study of different machine learning (ML) systems which serves two major purposes: (a) identification of high risk differential genes using statistical tests and (b) development of a ML strategy for predicting cancer genes.
View Article and Find Full Text PDFWilson's disease (WD) is an autosomal recessive disorder which is caused by poor excretion of copper in mammalian cells. In this review, various issues such as effective characterization of ATP7B genes, scope of gene network topology in genetic analysis, pattern recognition using different computing approaches and fusion possibilities in imaging and genetic dataset are discussed vividly. We categorized this study into three major sections: (A) WD genetics, (B) diagnosis guidelines and (3) treatment possibilities.
View Article and Find Full Text PDFPurpose Of Review: Cardiovascular disease (CVD) and stroke risk assessment have been largely based on the success of traditional statistically derived risk calculators such as Pooled Cohort Risk Score or Framingham Risk Score. However, over the last decade, automated computational paradigms such as machine learning (ML) and deep learning (DL) techniques have penetrated into a variety of medical domains including CVD/stroke risk assessment. This review is mainly focused on the changing trends in CVD/stroke risk assessment and its stratification from statistical-based models to ML-based paradigms using non-invasive carotid ultrasonography.
View Article and Find Full Text PDFThe advent of Deep Learning (DL) is poised to dramatically change the delivery of healthcare in the near future. Not only has DL profoundly affected the healthcare industry it has also influenced global businesses. Within a span of very few years, advances such as self-driving cars, robots performing jobs that are hazardous to human, and chat bots talking with human operators have proved that DL has already made large impact on our lives.
View Article and Find Full Text PDFPurpose: Conventional cardiovascular risk factors (CCVRFs) and carotid ultrasound image-based phenotypes (CUSIP) are independently associated with long-term risk of cardiovascular (CV) disease. In this study, 26 cardiovascular risk (CVR) factors which consisted of a combination of CCVRFs and CUSIP together were ranked. Further, an optimal risk calculator using AtheroEdge composite risk score (AECRS1.
View Article and Find Full Text PDFToday, the 10-year cardiovascular risk largely relies on conventional cardiovascular risk factors (CCVRFs) and suffers from the effect of atherosclerotic wall changes. In this study, we present a novel risk calculator AtheroEdge Composite Risk Score (AECRS1.0), designed by fusing CCVRF with ultrasound image-based phenotypes.
View Article and Find Full Text PDFPurpose Of The Review: Rheumatoid arthritis (RA) is a chronic, autoimmune disease which may result in a higher risk of cardiovascular (CV) events and stroke. Tissue characterization and risk stratification of patients with rheumatoid arthritis are a challenging problem. Risk stratification of RA patients using traditional risk factor-based calculators either underestimates or overestimates the CV risk.
View Article and Find Full Text PDFA World Health Organization (WHO) Feb 2018 report has recently shown that mortality rate due to brain or central nervous system (CNS) cancer is the highest in the Asian continent. It is of critical importance that cancer be detected earlier so that many of these lives can be saved. Cancer grading is an important aspect for targeted therapy.
View Article and Find Full Text PDFComput Biol Med
February 2019
Motivation: AtheroEdge Composite Risk Score (AECRS1.0) is an integrated stroke/cardiovascular risk calculator that was recently developed and computes the 10-year risk of carotid image phenotypes by integrating conventional cardiovascular risk factors (CCVRFs). It is therefore important to understand how closely AECRS1.
View Article and Find Full Text PDFEchocardiography
February 2019
Motivation: This study presents a novel nonlinear model which can predict 10-year carotid ultrasound image-based phenotypes by fusing nine traditional cardiovascular risk factors (ethnicity, gender, age, artery type, body mass index, hemoglobin A1c, hypertension, low-density lipoprotein, and smoking) with five types of carotid automated image phenotypes (three types of carotid intima-media thickness (IMT), wall variability, and total plaque area).
Methodology: Two-step process was adapted: First, five baseline carotid image-based phenotypes were automatically measured using AtheroEdge (AtheroPoint , CA, USA) system by two operators (novice and experienced) and an expert. Second, based on the annual progression rates of cIMT due to nine traditional cardiovascular risk factors, a novel nonlinear model was adapted for 10-year predictions of carotid phenotypes.
Front Biosci (Landmark Ed)
January 2019
Deep learning (DL) is affecting each and every sphere of public and private lives and becoming a tool for daily use. The power of DL lies in the fact that it tries to imitate the activities of neurons in the neocortex of human brain where the thought process takes place. Therefore, like the brain, it tries to learn and recognize patterns in the form of digital images.
View Article and Find Full Text PDFBackground: Common carotid artery lumen diameter (LD) ultrasound measurement systems are either manual or semi-automated and lack reproducibility and variability studies. This pilot study presents an automated and cloud-based LD measurements software system (AtheroCloud) and evaluates its: (i) intra/inter-operator reproducibility and (ii) intra/inter-observer variability.
Methods: 100 patients (83M, mean age: 68±11years), IRB approved, consisted of L/R CCA artery (200 ultrasound images), acquired using a 7.
Cerebral small vessel disease (cSVD) has a crucial role in lacunar stroke and brain hemorrhages and is a leading cause of cognitive decline and functional loss in elderly patients. Based on underlying pathophysiology, cSVD can be subdivided into amyloidal and non-amyloidal subtypes. Genetic factors of cSVD play a pivotal role in terms of unraveling molecular mechanism.
View Article and Find Full Text PDFManual ultrasound (US)-based methods are adapted for lumen diameter (LD) measurement to estimate the risk of stroke but they are tedious, error prone, and subjective causing variability. We propose an automated deep learning (DL)-based system for lumen detection. The system consists of a combination of two DL systems: encoder and decoder for lumen segmentation.
View Article and Find Full Text PDFBackground: This study examines the association between six types of carotid artery disease image-based phenotypes and HbA1c in diabetes patients. Six phenotypes (intima-media thickness measurements (cIMT (ave.), cIMT (max.
View Article and Find Full Text PDFAim: The study investigated the association of carotid ultrasound echolucent plaque-based biomarker with HbA1c, measured as age-adjusted grayscale median (AAGSM) as a function of chronological age, total plaque area, and conventional grayscale median (GSM).
Methods: Two stages were developed: (a) automated measurement of carotid parameters such as total plaque area (TPA); (b) computing the AAGSM as a function of GSM, age, and TPA. Intra-operator (novice and experienced) analysis was conducted.
Motivation: The carotid intima-media thickness (cIMT) is an important biomarker for cardiovascular diseases and stroke monitoring. This study presents an intelligence-based, novel, robust, and clinically-strong strategy that uses a combination of deep-learning (DL) and machine-learning (ML) paradigms.
Methodology: A two-stage DL-based system (a class of AtheroEdge™ systems) was proposed for cIMT measurements.
Background: Child and neonatal mortality is a serious problem in Bangladesh. The main objective of this study was to determine the most significant socio-economic factors (covariates) between the years 2011 and 2014 that influences on neonatal and child mortality and to further suggest the plausible policy proposals.
Methods: We modeled the neonatal and child mortality as categorical dependent variable (alive vs death of the child) while 16 covariates are used as independent variables using χ statistic and multiple logistic regression (MLR) based on maximum likelihood estimate.