Publications by authors named "Harm-Anton Klok"

Upon exposure to a good solvent, polymer brushes prepared via surface-initiated polymerization can undergo degrafting via cleavage of bonds that anchor the polymer tethers to the underlying substrate. As polymer brushes are often used in a solvent swollen state, this has implications for the longevity of these polymer coatings. Improving the fundamental understanding of this process is thus also of practical importance.

View Article and Find Full Text PDF

Amino acid-based poly(ester urea)s are an attractive class of polymers that are of interest for a variety of biomedical applications. Generally, amino acid-based poly(ester urea)s are prepared by polymerization of diamines, which are obtained from the corresponding amino acids and aliphatic diols. This article presents an alternative synthetic strategy that uses diamine monomers obtained from aromatic, 4-hydroxycinnamic acid-derived diols.

View Article and Find Full Text PDF

Ought to their bioinert properties and facile synthesis, poly[(oligoethylene glycol)methacrylate]s (POEGMAs) have been raised as attractive alternatives to poly(ethylene glycols) (PEGs) in an array of (bio)material applications, especially when they are applied as polymer brush coatings. However, commercially available OEG-methacrylate (macro)monomers feature a broad distribution of OEG lengths, thus generating structurally polydisperse POEGMAs when polymerized through reversible deactivation radical polymerization. Here, we demonstrate that the interfacial physicochemical properties of POEGMA brushes are significantly affected by their structural dispersity, , the degree of heterogeneity in the length of side OEG segments.

View Article and Find Full Text PDF

The preparation of polymer gels via cross-linking of four-arm star-shaped poly(ethylene glycol) (Tetra-PEG) precursors is an attractive strategy to prepare networks with relatively well-defined topologies. Typically, Tetra-PEG gels are obtained by cross-linking heterocomplementary reactive Tetra-PEG precursors. This study, in contrast, explores the cross-linking of self-reactive, thiol-end functional Tetra-PEG macromers to form disulfide-cross-linked gels.

View Article and Find Full Text PDF

Piezo- and pyroelectric materials are of interest, for example, for energy harvesting applications, for the development of tactile sensors, as well as neuromorphic computing. This study reports the observation of pyro- and piezoelectricity in thin surface-attached polymer brushes containing zwitterionic and electrolytic side groups that are prepared via surface-initiated polymerization. The pyro- and piezoelectric properties of the surface-grafted polyelectrolyte brushes are found to sensitively depend on and can be tuned by variation of the counterion.

View Article and Find Full Text PDF

In the context of transitioning toward a more sustainable use of natural resources, the application of lignin to substitute commonly utilized petroleum-based plastics can play a key role. Although lignin is highly available at low cost and presents interesting properties, such as antioxidant and UV barrier activities, its application is limited by its low reactivity, which is a consequence of harsh conditions normally used to extract lignin from biomass. In this work, the use of glyoxylic acid lignin (GA lignin), rich in carboxylic acid groups and hence highly reactive toward epoxy cross-linkers, is presented.

View Article and Find Full Text PDF

Polymer brushes are densely grafted, chain end-tethered assemblies of polymers that can be produced via surface-initiated polymerization. Typically, this is accomplished using initiators or chain transfer agents that are covalently attached to the substrate. This manuscript reports an alternative route towards polymer brushes, which involves the use of non-covalent cucurbit[7]uril-adamantane host-guest interactions to surface-immobilize initiators for atom transfer radical polymerization.

View Article and Find Full Text PDF

Polymer brushes are thin polymer films that consist of densely grafted, chain-end tethered polymers. These thin polymer films can be produced either by anchoring presynthesized chain-end functional polymers to the surface of interest ("grafting to"), or by using appropriately modified surfaces to facilitate growth of polymer chains from the substrate ("grafting from"). The vast majority of polymer brushes that have been prepared and studied so far involved chain-end tethered polymer assemblies that are anchored to the surface via covalent bonds.

View Article and Find Full Text PDF

Swelling in polymer materials is a ubiquitous phenomenon. At a molecular level, swelling is dictated by solvent-polymer interactions, and has been thoroughly studied both theoretically and experimentally. Favorable solvent-polymer interactions result in the solvation of polymer chains.

View Article and Find Full Text PDF

The exploration of renewable resources is essential to help transition toward a more sustainable materials economy. The valorization of lignin can be a key component of this transition. Lignin is an aromatic polymer that constitutes approximately one-third of the total lignocellulosic biomass and is isolated in huge quantities as a waste material of biofuel and paper production.

View Article and Find Full Text PDF

Anion-exchange-membrane fuel cells (AEMFCs) are a cost-effective alternative to proton-exchange-membrane fuel cells (PEMFCs). The development of high-performance and durable AEMFCs requires highly conductive and robust anion-exchange membranes (AEMs). However, AEMs generally exhibit a trade-off between conductivity and dimensional stability.

View Article and Find Full Text PDF

Bacteria represent a class of living cells that are very attractive carriers for the transport and delivery of nano- and microsized particles. The use of cell-based carriers, such as for example bacteria, may allow to precisely direct nano- or microsized cargo to a desired site, which would greatly enhance the selectivity of drug delivery and allow to mitigate side effects. One key step towards the use of such nano-/microparticle - bacteria hybrids is the immobilization of the cargo on the bacterial cell surface.

View Article and Find Full Text PDF

Transmission of viruses through contact with contaminated surfaces is an important pathway for the spread of infections. Antiviral surface coatings are useful to minimize such risks. Current state-of-the-art approaches toward antiviral surface coatings either involve metal-based materials or complex synthetic polymers.

View Article and Find Full Text PDF

Poly(lactic acid) (PLA) represents one of the most widely used biodegradable polymers for food packaging applications. While this material provides many advantages, it is characterized by limited antioxidant and UV-barrier properties. Blending PLA with lignin is an attractive strategy to address these limitations.

View Article and Find Full Text PDF

The development of sustainable plastics from abundant renewable feedstocks has been limited by the complexity and efficiency of their production, as well as their lack of competitive material properties. Here we demonstrate the direct transformation of the hemicellulosic fraction of non-edible biomass into a tricyclic diester plastic precursor at 83% yield (95% from commercial xylose) during integrated plant fractionation with glyoxylic acid. Melt polycondensation of the resulting diester with a range of aliphatic diols led to amorphous polyesters (M = 30-60 kDa) with high glass transition temperatures (72-100 °C), tough mechanical properties (ultimate tensile strengths of 63-77 MPa, tensile moduli of 2,000-2,500 MPa and elongations at break of 50-80%) and strong gas barriers (oxygen transmission rates (100 µm) of 11-24 cc m day bar and water vapour transmission rates (100 µm) of 25-36 g m day) that could be processed by injection moulding, thermoforming, twin-screw extrusion and three-dimensional printing.

View Article and Find Full Text PDF

Cells are promising as carriers that can enhance the delivery of nanomedicines. Cells that carry nanomedicinal cargo, either immobilized on the cell surface or internalized, can allow for highly specific delivery and can enable the transport of nanomedicines across challenging physiological barriers. The effective use of cells as carriers for the transport and delivery of nanomedines requires a careful selection of the chemical strategies that are used to load the cell-based carriers with their cargo.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: