Aviat Space Environ Med
February 2010
Introduction: Decrements in muscular strength during long-duration missions in space could be mission-critical during construction and exploration activities. The purpose of this study was to quantify changes in muscle volume, strength, and endurance of crewmembers on the International Space Station (ISS) in the context of new measurements of loading during exercise countermeasures.
Methods: Strength and muscle volumes were measured from four male ISS crewmembers (49.
Unlabelled: We studied the effect of re-exposure to Earth's gravity on the proximal femoral BMD and structure of astronauts 1 year after missions lasting 4-6 months. We observed that the readaptation of the proximal femur to Earth's gravity entailed an increase in bone size and an incomplete recovery of volumetric BMD.
Introduction: Bone loss is a well-known result of skeletal unloading in long-duration spaceflight, with the most severe losses occurring in the proximal femur.
Eur J Appl Physiol
January 2005
It is generally held that space travelers experience muscle dysfunction and atrophy during exposure to microgravity. However, observations are scarce and reports somewhat inconsistent with regard to the time course, specificity and magnitude of such changes. Hence, we examined four male astronauts (group mean approximately 43 years, 86 kg and 183 cm) before and after a 17-day spaceflight (Space Transport System-78).
View Article and Find Full Text PDF