The molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. In , the neuroendocrine transforming growth factor-β ligand, DAF-7, regulates diverse behavioral responses to bacterial food and pathogens.
View Article and Find Full Text PDFThe molecular mechanisms underlying diversity in animal behavior are not well understood. A major experimental challenge is determining the contribution of genetic variants that affect neuronal gene expression to differences in behavioral traits. The neuroendocrine TGF-beta ligand, DAF-7, regulates diverse behavioral responses of to bacterial food and pathogens.
View Article and Find Full Text PDFBiochem Biophys Res Commun
March 2017
Free-living nematode Caenorhabditis elegans exhibits various behaviors to adapt to the fluctuating environment. When early larvae of C. elegans experience the harsh environmental condition, they develop to an alternative developmental stage called dauer, which shows nictation, a stage-specific waving behavior.
View Article and Find Full Text PDFBackground: Dendrites often display remarkably complex and diverse morphologies that are influenced by developmental and environmental cues. Neuroplasticity in response to adverse environmental conditions entails both hypertrophy and resorption of dendrites. How dendrites rapidly alter morphology in response to unfavorable environmental conditions is unclear.
View Article and Find Full Text PDFMany nematodes show a stage-specific behavior called nictation in which a worm stands on its tail and waves its head in three dimensions. Here we show that nictation is a dispersal behavior regulated by a specific set of neurons, the IL2 cells, in C. elegans.
View Article and Find Full Text PDF