Expansion of nucleotide repeat sequences is associated with more than 40 human neuromuscular disorders. The different pathogenic mechanisms associated with the expression of nucleotide repeats are not well understood. We use a Caenorhabditis elegans model that expresses expanded CUG repeats only in cells of the body wall muscle and recapitulate muscle dysfunction and impaired organismal motility to identify the basis by which expression of RNA repeats is toxic to muscle function.
View Article and Find Full Text PDFBackground: With the ever-increasing requirements of accuracy and personalization of radiotherapy treatments, stereotactic radiotherapy (SRT) with volumetric modulated arc therapy (VMAT) on O-ring Halcyon radiotherapy system could potentially provide a fast, safe, and feasible treatment option.
Purpose: The purpose of this study was to assess the delivery of Halcyon VMAT plans for small targets.
Methods: Well-defined VMAT-SRT plans were created on Halcyon radiotherapy system with the stacked and staggered dual-layer MLC design for the film measurement set-up and the target sizes and shapes designed to emulate the targets of the stereotactic treatments.
Background: In highly heterogeneous medium, such as one with lung tissue or air cavities, the dose in the low-density region or after it, as calculated by the conventional methods based on convolution with an energy-spreading kernel, is usually overestimated in comparison with measurements or more accurate predictions.
Purpose: To correct the overestimation, we propose a method of scaling the total energy released per mass (TERMA).
Methods: The scaling depends on both the density distribution and the effective beam size in the lateral direction.
A Monte Carlo (MC) model of a Halcyon and Ethos (Varian Medical Systems, a Siemens Healthineers Company) radiotherapy beam was validated and field-independent phase space (PHSP) files were recorded above the dual-layer multileaf collimators (MLC).The treatment head geometry was modeled according to engineering drawings and the dual-layer MLC was imported from CAD (computer-aided design) files. The information for the incident electron beam was achieved from an iterative electromagnetic solver.
View Article and Find Full Text PDFBackground: With the ever-increasing complexity of dynamic radiotherapy treatments, dose calculation algorithms are challenged to accurately calculate the dose resulting from small, on- and off-axis multileaf collimator (MLC) aperture movements. Although the currently available Eclipse (Varian Medical Systems, Palo Alto) dose calculation algorithms still use a simplified, binary MLC model, a more advanced and detailed modeling of the MLC could be beneficial for the dose calculation precision of high-end treatments.
Purpose: To improve the modeling of the MLC in the dose calculation algorithms of the Eclipse treatment planning system, an enhanced MLC attenuation model was constructed through ray tracing through the actual leaf designs for the most commonly used Varian MLC types.
The COVID-19 pandemic reduced in-person visit volume and fueled a corresponding explosion in demand for telehealth services, resulting in the enactment of several temporary state and federal policies to allow greater flexibility in delivering telehealth services. This review examines patterns in telehealth utilization during the pandemic by synthesizing available findings from large-scale studies. To be included in this review, studies must be of original research, include data from 2020 or 2021, have a U.
View Article and Find Full Text PDFScots pine heartwood is known to have resistance to wood decay due to the presence of extractives, namely stilbenes and resin acids. However, previous studies have indicated that these extractives are degradable by wood decaying fungi. This study aimed to investigate the relationship between extractive degradation and heartwood decay in detail and to gain insight into the mechanisms of extractive degradation.
View Article and Find Full Text PDFOrganic charge-transfer complexes (CTCs) formed by strong electron acceptor and strong electron donor molecules are known to exhibit exotic effects such as superconductivity and charge density waves. We present a low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS) study of a two-dimensional (2D) monolayer CTC of tetrathiafulvalene (TTF) and fluorinated tetracyanoquinodimethane (FTCNQ), self-assembled on the surface of oxygen-intercalated epitaxial graphene on Ir(111) (G/O/Ir(111)). We confirm the formation of the charge-transfer complex by d/d spectroscopy and direct imaging of the singly occupied molecular orbitals.
View Article and Find Full Text PDFWe studied the stress response of five-year-old Scots pine xylem to mechanical wounding using RNA sequencing. In general, we observed a bimodal response in pine xylem after wounding. Transcripts associated with water deficit stress, defence, and cell wall modification were induced at the earliest time point of three hours; at the same time, growth-related processes were down-regulated.
View Article and Find Full Text PDFTelemed J E Health
November 2021
Low-income populations experience many barriers to accessing affordable, high-quality mental health services. One promising approach to improving access to care may be utilizing telemedicine in combination with expanding state Medicaid programs to cover low-income childless adults. This combination has the potential to reduce the prevalence of untreated mental illness; improve low-income populations' health and well-being; and save individuals', health care centers', and federal and state governments' money.
View Article and Find Full Text PDFThe heartwood of many wood species is rich in extractives, which improve the wood material's resistance to biological attack. Their concentration is generally higher in outer than inner heartwood, but the exact radial changes in aging heartwood remain poorly characterized. This investigation studied these radial changes in detail in Scots pine (Pinus sylvestris L.
View Article and Find Full Text PDFFor centuries, cutting and folding papers with special patterns have been used to build beautiful, flexible and complex three-dimensional structures. Inspired by the old idea of kirigami (paper cutting), and the outstanding properties of graphene, recently graphene kirigami structures were fabricated to enhance the stretchability of graphene. However, the possibility of further tuning the electronic and thermal transport along the 2D kirigami structures has remained original to investigate.
View Article and Find Full Text PDFGrain boundaries in graphene are inherent in wafer-scale samples prepared by chemical vapor deposition. They can strongly influence the mechanical properties and electronic and heat transport in graphene. In this work, we employ extensive molecular dynamics simulations to study thermal transport in large suspended polycrystalline graphene samples.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2017
The development of spatially homogeneous mixed structures with boron (B), nitrogen (N) and carbon (C) atoms arranged in a honeycomb lattice is highly desirable, as they open the possibility of creating stable two-dimensional materials with tunable band gaps. However, at least in the free-standing form, the mixed BCN system is energetically driven towards phase segregation to graphene and hexagonal BN. It is possible to overcome the segregation when BCN material is grown on a particular metal substrate, for example Ru(0 0 0 1), but the stabilization mechanism is still unknown.
View Article and Find Full Text PDFGrain boundary triple junctions are a key structural element in polycrystalline materials. They are involved in the formation of microstructures and can influence the mechanical and electronic properties of materials. In this work we study the structure and energetics of triple junctions in graphene using a multiscale modelling approach based on combining the phase field crystal approach with classical molecular dynamics simulations and quantum-mechanical density functional theory calculations.
View Article and Find Full Text PDFπ-conjugated organic molecules tend to adsorb in a planar configuration on graphene irrespective of their charge state. In contrast, here we demonstrate charging-induced strong structural relaxation of tetrafluorotetracyanoquinodimethane (FTCNQ) on epitaxial graphene on Ir(111) (G/Ir(111)). The work function modulation over the graphene moiré unit cell causes site-selective charging of FTCNQ.
View Article and Find Full Text PDFUsing dynamical mean-field theory and exact diagonalization we study the phase diagram of the repulsive Haldane-Hubbard model, varying the interaction strength and the sublattice potential difference. In addition to the quantum Hall phase with Chern number C=2 and the band insulator with C=0 present already in the noninteracting model, the system also exhibits a C=0 Mott insulating phase, and a C=1 quantum Hall phase. We explain the latter phase by a spontaneous symmetry breaking where one of the spin components is in the Hall state and the other in the band insulating state.
View Article and Find Full Text PDFWe study the fabrication and optical properties of micropatterned luminescent optical epoxy samples. Five different photoluminescent materials were added to epoxy resin to form luminescent epoxies of different colors and micropatterned gratings were imprinted on the surface of the samples. The absorbance spectra of the unpatterned epoxy samples were measured with spectrometer and the luminescence intensities of all samples were measured using custom made bispectrometer.
View Article and Find Full Text PDFGraphene nanoribbons (GNRs)-narrow stripes of graphene-have emerged as promising building blocks for nanoelectronic devices. Recent advances in bottom-up synthesis have allowed production of atomically well-defined armchair GNRs with different widths and doping. While all experimentally studied GNRs have exhibited wide bandgaps, theory predicts that every third armchair GNR (widths of N=3m+2, where m is an integer) should be nearly metallic with a very small bandgap.
View Article and Find Full Text PDFThe combination of several materials into heterostructures is a powerful method for controlling material properties. The integration of graphene (G) with hexagonal boron nitride (BN) in particular has been heralded as a way to engineer the graphene band structure and implement spin- and valleytronics in 2D materials. Despite recent efforts, fabrication methods for well-defined G-BN structures on a large scale are still lacking.
View Article and Find Full Text PDFWe present a computational scheme for orbital-free density functional theory (OFDFT) that simultaneously provides access to all-electron values and preserves the OFDFT linear scaling as a function of the system size. Using the projector augmented-wave method (PAW) in combination with real-space methods, we overcome some obstacles faced by other available implementation schemes. Specifically, the advantages of using the PAW method are twofold.
View Article and Find Full Text PDF