Publications by authors named "Haritha Meruvu"

The production of phenyllactic acid (PLA) has been reported by several researchers, but so far, no mention has been made of augmented PLA production using an orchestrated assembly of simple techniques integrated to improve lactic acid bacteria (LAB) metabolism for the same. This review summarizes sequentially tailoring LAB growth and metabolism for augmented PLA catalysis through several strategies like monitoring LAB sustenance by choosing appropriate starter PLA-producing LAB strains isolated from natural environments, with desirably fastidious growth rates, properties like acidification, proteolysis, bacteriophage-resistance, aromatic/texturing-features, etc.; entrapping chosen LAB strains in novel cryogels and/or co-cultivating two/more LAB strains to improve their biotransformation potential and promote growth dependency/sustainability; adopting adaptive evolution methods designed to improve LAB strains under selection pressure inducing desired phenotypes tolerant to stress factors like heat, salt, acid, and solvent; monitoring physico-chemical LAB fermentation factors like temperature, pH, dissolved oxygen content, enzymes, and cofactors for PLA biosynthesis; and modulating purification/downstream processes to extract substantial PLA yields.

View Article and Find Full Text PDF

The current state-of-art research pertaining to lactic acid bacteria (LAB) calls for the screening and isolation of robust LAB strains to achieve holistic exploitation of LAB and their metabolites of marketable importance. Hence it is imperative to comprehend LAB sources, growth requisites, isolation and characterization strategies necessary for featured cataloging and appropriate culturing. This review comprehensively describes various growth media and biomasses used for supporting LAB sustenance, assay procedures needed for the isolation and characterization of LAB strains, and their application in diverse sectors.

View Article and Find Full Text PDF

Colorants find social and commercial applications in cosmetics, food, pharmaceuticals, textiles, and other industrial sectors. Among the available options, chemically synthesized colorants are popular due to their low-cost and flexible production modes, but health and environmental concerns have encouraged the valorization of biopigments that are natural and ecofriendly. Among natural biopigment producers, microorganisms are noteworthy for their all-seasonal production of stable and low-cost pigments with high-yield titers.

View Article and Find Full Text PDF

Methanotrophic bacteria are entities with innate biocatalytic potential to biofilter and oxidize methane into simpler compounds concomitantly conserving energy, which can contribute to copious industrial applications. The future and efficacy of such industrial applications relies upon acquiring and/or securing robust methanotrophs with taxonomic and phenotypic diversity. Despite several dramatic advances, isolation of robust methanotrophs is still a long-way challenging task with several lacunae to be filled in sequentially.

View Article and Find Full Text PDF

The purpose of the research was to study the purification and partial characterization of antifungal alkaline chitinase from a newly isolated Citrobacter freundii haritD11. The enzyme was purified in a three-step procedure involving ammonium sulfate precipitation, dialysis, and Sephadex G-100 gel filtration chromatography. The enzyme was shown to have a relative high molecular weight of 64 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis and was purified 7.

View Article and Find Full Text PDF