The burden of chronic metabolic diseases such as obesity, type 2 diabetes mellitus (T2DM), and metabolic dysfunction-associated steatotic liver disease (MASLD) and the urgency of the epidemiological situation necessitate the development of therapies that enhance metabolic health and alter the trajectory of metabolic disease in society. Certain bariatric-metabolic surgeries have proven to be effective approaches for treating metabolic dysfunction, showing remission or significant improvements in obesity, T2DM, and MASLD-related outcomes, suggesting that these interventions might be able to "reset" a pathologically calibrated metabolic setpoint. However, considering the challenges and invasiveness of surgery, endoscopic bariatric metabolic therapies (EBMTs) have emerged with a primary focus to reconstruct or mimic anatomical and/or functional changes observed with bariatric surgery in a more broadly accessible manner.
View Article and Find Full Text PDFBackground And Aims: The duodenum has been shown to play a key role in glucose homeostasis. Duodenal mucosal resurfacing (DMR) is an endoscopic procedure for patients with type 2 diabetes (T2D) in which the duodenal mucosa is hydrothermally ablated. DMR improves glycemic control, but the underlying mechanisms remain unclear.
View Article and Find Full Text PDFAims: Duodenal mucosal resurfacing (DMR) is an endoscopic procedure developed to improve metabolic parameters and restore insulin sensitivity in patients with diabetes. Here we report long-term DMR safety and efficacy from the REVITA-1 study.
Materials And Methods: REVITA-1 was a prospective, single-arm, open-label, multicenter study of DMR feasibility, safety, and efficacy in patients with type 2 diabetes (hemoglobin A1c [HbA1c] of 7.
Modern changes in diet and lifestyle have led to an explosion of insulin resistance and metabolic diseases around the globe which, if left unchecked, will become a principal driver of morbidity and mortality in the 21st century. The nature of the metabolic homeostatic shift within the body has therefore become a topic of considerable interest. While the gut has long been recognized as an acute nutrient sensor with signaling mechanisms to the other metabolic organs of the body, its role in regulating the body's metabolic status over longer periods of time has been underappreciated.
View Article and Find Full Text PDFGut
February 2022
Objective: Hydrothermal duodenal mucosal resurfacing (DMR) is a safe, outpatient endoscopic procedure. REVITA-2, a double-blind, superiority randomised controlled trial, investigates safety and efficacy of DMR using the single catheter Revita system (Revita DMR (catheter and system)), on glycaemic control and liver fat content in type 2 diabetes (T2D).
Design: Eligible patients (haemoglobin A1c (HbA1c) 59-86 mmol/mol, body mass index≥24 and ≤40 kg/m, fasting insulin >48.
Background And Aims: We aimed to develop duodenal mucosal resurfacing (DMR), a minimally invasive upper endoscopic hydrothermal ablation procedure, to treat insulin-resistant metabolic diseases.
Methods: We completed a sham-controlled, rodent proof-of-concept study and longitudinal safety study in pigs to demonstrate feasibility to test DMR in humans. Subsequently, the DMR procedure was implemented in an open-label first-in-human (FIH) study of safety and efficacy in patients with type 2 diabetes (T2D).
Gastrointest Endosc Clin N Am
April 2017
The duodenum has become recognized as a metabolic signaling center that is involved in regulating insulin action and, therefore, insulin resistance states such as type 2 diabetes. Bariatric surgery and other manipulations of the upper intestine, in particular the duodenum, have shown that limiting nutrient exposure or contact in this key region exerts powerful metabolic effects. Early human clinical trial data suggest that endoscopic hydrothermal duodenal mucosal resurfacing is well tolerated in human subjects and has an acceptable safety profile.
View Article and Find Full Text PDFObjective: To assess procedural safety and glycemic indices at 6 months in a first-in-human study of duodenal mucosal resurfacing (DMR), a novel, minimally invasive, upper endoscopic procedure involving hydrothermal ablation of the duodenal mucosa, in patients with type 2 diabetes and HbA ≥7.5% (58 mmol/mol) on one or more oral antidiabetic agents.
Research Design And Methods: Using novel balloon catheters, DMR was conducted on varying lengths of duodenum in anesthetized patients at a single medical center.
Tumor progression is driven by genetic mutations, but little is known about the environmental conditions that select for these mutations. Studying the transcriptomes of paired colorectal cancer cell lines that differed only in the mutational status of their KRAS or BRAF genes, we found that GLUT1, encoding glucose transporter-1, was one of three genes consistently up-regulated in cells with KRAS or BRAF mutations. The mutant cells exhibited enhanced glucose uptake and glycolysis and survived in low-glucose conditions, phenotypes that all required GLUT1 expression.
View Article and Find Full Text PDFIn contrast to normal cells, aneuploidy--alterations in the number of chromosomes--is consistently observed in virtually all cancers. A growing body of evidence suggests that aneuploidy is often caused by a particular type of genetic instability, called chromosomal instability, which may reflect defects in mitotic segregation in cancer cells. A better understanding of the molecular mechanisms leading to aneuploidy holds promise for the development of cancer drugs that target this process.
View Article and Find Full Text PDFAneuploidy has long been recognized to be a cardinal feature of many neoplasias. However, the role of aneuploidy in tumorigenesis continues to be a matter of debate. We believe that aneuploidy in cancers is the result of chromosomal instability, a process in which dividing cancer cells segregate their chromosomes with decreased fidelity.
View Article and Find Full Text PDFAbout twenty years ago, scientists began to discover that colorectal cancers are caused by the sequential acquisition of genetic alterations in specific genes. To this day, we are still dissecting the genome of colorectal cancers to identify specific "culprit" genes that play a role in tumorigenesis. At the same time, we have more recently begun to turn our attention to the features of cancer cells that distinguish them from normal cells and that may be targeted therapeutically.
View Article and Find Full Text PDFAneuploidy, an abnormal chromosome number, has been recognized as a hallmark of human cancer for nearly a century; however, the mechanisms responsible for this abnormality have remained elusive. Here we report the identification of mutations in hCDC4 (also known as Fbw7 or Archipelago) in both human colorectal cancers and their precursor lesions. We show that genetic inactivation of hCDC4, by means of targeted disruption of the gene in karyotypically stable colorectal cancer cells, results in a striking phenotype associated with micronuclei and chromosomal instability.
View Article and Find Full Text PDFCancer results if regulatory mechanisms of cell birth and death are disrupted. Colorectal tumorigenesis is initiated by somatic or inherited mutations in the APC tumor suppressor gene pathway. Several additional genetic hits in other tumor suppressor genes and oncogenes drive the progression from polyps to malignant, invasive cancer.
View Article and Find Full Text PDFA very large fraction of cancers have an abnormal genetic content, called aneuploidy, which is characterized by changes in chromosome structure and number. One explanation for this aneuploidy is chromosomal instability, in which cancer cells gain or lose whole chromosomes or large fractions of chromosomes at a greatly increased rate compared with normal cells. Here, we explore experimental and theoretical evidence for the initiation of chromosomal instability in very early colorectal cancers, and reflect on the role that chromosomal instability could have in colorectal tumorigenesis.
View Article and Find Full Text PDFWe attempted to answer two central questions about epigenetic silencing of the tumor suppressor gene p16(INK4a) in this study: (1) whether the maintenance of associated histone modifications is dependent on DNA methylation and (2) whether such histone modifications can occur prior to DNA methylation. By coupling chromatin immunoprecipitation with gene targeting and the analysis of specific alleles, we found that elimination of DNA methylation from a p16(INK4a) allele resulted in profound changes in surrounding histones. After continued passage of such cells, methylation of histone H3 lysine-9 occurred in conjunction with re-silencing in the absence of DNA methylation.
View Article and Find Full Text PDFGenes of the RAF family encode kinases that are regulated by Ras and mediate cellular responses to growth signals. Activating mutations in one RAF gene, BRAF, have been found in a high proportion of melanomas and in a small fraction of other cancers. Here we show that BRAF mutations in colorectal cancers occur only in tumours that do not carry mutations in a RAS gene known as KRAS, and that BRAF mutation is linked to the proficiency of these tumours in repairing mismatched bases in DNA.
View Article and Find Full Text PDF