Sulfur-containing polycyclic aromatic hydrocarbons (thia-PAHs or thiaarenes) are common constituents of air pollution and cigarette smoke, but only a few have been studied for health effects. We evaluated the mutagenicity in Salmonella TA98, TA100, and TA104 of two sulfur-containing derivatives of benzo[c]phenanthrene, phenanthro[3,4-b]thiophene (P[3,4-b]T), and phenanthro[4,3-b]thiophene (P[4,3-b]T) as well as their dihydrodiol and sulfone derivatives. In addition, we assessed levels of stable DNA adducts (by (32)P-postlabeling) as well as abasic sites (by an aldehydic-site assay) produced by six of these compounds in TA100.
View Article and Find Full Text PDFCadmium, a major metal constituent of tobacco smoke, elicits synergistic enhancement of cell transformation when combined with benzo[a]pyrene (BP) or other polynuclear aromatic hydrocarbons (PAHs). The mechanism underlying this synergism is not clearly understood. Present study demonstrates that (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE), an ultimate carcinogen of BP, induces apoptosis in human leukemic HL-60 cells and others, and cadmium at non-cytotoxic concentration inhibits BPDE-induced apoptosis.
View Article and Find Full Text PDFDNA damage caused by benzo[a]pyrene (B[a]P) or other polynuclear hydrocarbons (PAHs) induce p53 protein as a protective measure to eliminate the possibility of mutagenic fixation of the DNA damage. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits p53 response induced by B[a]P and other DNA-damaging agents and may cause tumor promotion. The molecular mechanism of attenuation of B[a]P-induced p53 response by TPA is not known.
View Article and Find Full Text PDFTo assess the role of human and rat cytochrome P450s in the metabolism of aza-polynuclear aromatic hydrocarbons (aza-PAHs) and to examine the influence of heterocyclic nitrogen on the metabolism of these chemicals, we have investigated the biotransformation of dibenz[a,h]acridine (DB[a,h]ACR), an aza-PAH with two nonidentical bay regions, by recombinant human cytochromes P450 1A1, 1B1, and 3A4 and rat P450 1A1. Among the three P450s, 1A1 was the most effective in metabolizing DB[a,h]ACR followed by 1B1 and 3A4. The major DB[a,h]ACR metabolites produced by human P450 1A1 and 1B1 were the dihydrodiols with a bay region double bond, namely, DB[a,h]ACR-3,4-diol and DB[a,h]ACR-10,11-diol (putative proximate carcinogen).
View Article and Find Full Text PDFCadmium, a widespread environmental pollutant and a cigarette smoke constituent, enhances the genotoxicity of benzo[a]pyrene (BP). The mechanism(s) underlying the potentiation of BP-induced genotoxicity by Cd2+ is not clearly understood. Our studies of the effects of noncytotoxic concentrations of Cd2+ on the levels of p53 and p21 in (+/-)-anti-benzo[a]pyrene-7,8-diol-9,10-epoxide (BPDE)-treated human fibroblasts showed that Cd2+ decreased BPDE-induced p21 levels in a dose-dependent manner whereas p53 accumulation is attenuated only at higher noncytotoxic concentrations of cadmium.
View Article and Find Full Text PDFBenzo[b]phenanthro[2,3-d]thiophene (BPT), and a number of its metabolites, including BPT-3,4-diol, BPT sulfoxide, BPT sulfone, and 3-hydroxyBPT were assessed for their mutagenic activity in Salmonella typhimurium strain TA100, and S. typhimurium base-specific strains TA7001, TA7002, TA7003, TA7004, TA7005, and TA7006. Among the compounds tested in strain TA100, BPT, BPT sulfone, and 3-hydroxyBPT did not show any significant mutagenic response in the presence of S9.
View Article and Find Full Text PDFBenzo[b]phenanthro[2,3-d]thiophene (BPT), a thia analogue of dibenz[a,h]anthracene (DBA), is a carcinogenic environmental pollutant. We have examined the metabolism of BPT by rodent liver microsomes to investigate the mechanism by which BPT produces mutagenic and carcinogenic effects. Both rat and mouse liver microsomes biotransformed [G-(3)H]BPT to various metabolites including BPT 3,4-diol and BPT sulfoxide, which are significantly more mutagenic than the parent compound.
View Article and Find Full Text PDFWe have investigated the regio- and stereoselective metabolism of phenanthrene by the liver microsomes of brown bullhead (Ameriurus nebulosus), a bottom dwelling fish species. The liver microsomes from untreated and 3-methylcholanthrene (3-MC)-treated brown bullheads metabolized phenanthrene at a rate of 14.1 and 20.
View Article and Find Full Text PDFWe have investigated the metabolism of chrysene (CHR) and 5-methychyrsene (5-MeCHR) by Shasta rainbow trout (Oncorhyncus mykiss) and Long Evans rat liver microsomes to assess the effect of a non-benzo ring methyl substituent on the reactions involved in the metabolism of polycyclic aromatic hydrocarbons (PAHs). Trout as well as rat liver microsomes metabolized both CHR and 5-MeCHR at essentially similar rates, indicating that the methyl substituent does not alter the substrate specificity of the cytochrome P450(s) involved in the metabolism of the two PAHs. Dihydrodiols were the major CHR metabolites formed by both trout and rat liver microsomes, whereas the trout liver microsomes formed a considerably higher proportion of 5-MeCHR phenols compared to diols, indicating that 5-methyl substitution alters the substrate specificity of trout microsomal epoxide hydrolase for 5-MeCHR epoxides.
View Article and Find Full Text PDFWe have investigated the regio- and stereoselective metabolism of chrysene, a four-ring symmetrical carcinogenic polycyclic aromatic hydrocarbon (PAH), by the liver microsomes of brown bullhead (Ameriurus nebulosus), a bottom-dwelling fish species. The liver microsomes from untreated and 3-methylcholanthrene (3-MC)-treated brown bullheads metabolized chrysene at the rate of 30.1 and 82.
View Article and Find Full Text PDF