Melanoma tumors driven by BRAF mutations often do not respond to BRAF/MEK/ERK pathway inhibitors currently used in treatment. One documented mechanism of resistance is upregulation of SOX2, a transcription factor that is essential for tumor growth and expansion, particularly in melanoma tumors with BRAF mutations. Targeting transcription factors pharmacologically has been elusive for drug developers, limiting treatment options.
View Article and Find Full Text PDFThe tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that most human cancers are resistant to TRAIL. We show that exposure to recombinant TRAIL resulted in the accumulation of ubiquitinated proteins and free ubiquitin polymers, suggesting a link between TRAIL and the ubiquitin (Ub)-proteasome pathway.
View Article and Find Full Text PDFUsp9x has emerged as a potential therapeutic target in some hematologic malignancies and a broad range of solid tumors including brain, breast, and prostate. To examine Usp9x tumorigenicity and consequence of Usp9x inhibition in human pancreatic tumor models, we carried out gain- and loss-of-function studies using established human pancreatic tumor cell lines (PANC1 and MIAPACA2) and four spontaneously immortalized human pancreatic patient-derived tumor (PDX) cell lines. The effect of Usp9x activity inhibition by small molecule deubiquitinase inhibitor G9 was assessed in 2D and 3D culture, and its efficacy was tested in human tumor xenografts.
View Article and Find Full Text PDFETS transcription factors are commonly deregulated in cancer by chromosomal translocation, overexpression or post-translational modification to induce gene expression programs essential in tumorigenicity. Targeted destruction of these proteins may have therapeutic impact. Here we report that Ets-1 destruction is regulated by the deubiquitinating enzyme, Usp9x, and has major impact on the tumorigenic program of metastatic melanoma.
View Article and Find Full Text PDFUsp9x was recently shown to be highly expressed in myeloma patients with short progression-free survival and is proposed to enhance stability of the survival protein Mcl-1. In this study, we found that the partially selective Usp9x deubiquitinase inhibitor WP1130 induced apoptosis and reduced Mcl-1 protein levels. However, short hairpin RNA-mediated knockdown (KD) of Usp9x in myeloma cells resulted in transient induction of apoptosis, followed by a sustained reduction in cell growth.
View Article and Find Full Text PDFUsp5 is a deubiquitinase (DUB) previously shown to regulate unanchored poly-ubiquitin (Ub) chains, p53 transcriptional activity and double-strand DNA repair. In BRAF mutant melanoma cells, Usp5 activity was suppressed by BRAF inhibitor (vemurafenib) in sensitive but not in acquired or intrinsically resistant cells. Usp5 knockdown overcame acquired vemurafenib resistance and sensitized BRAF and NRAS mutant melanoma cells to apoptosis initiated by MEK inhibitor, cytokines or DNA-damaging agents.
View Article and Find Full Text PDFTumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising molecule for anti-cancer therapies. Unfortunately, cancer cells frequently acquire resistance to rhTRAIL. Various co-treatments have been proposed to overcome apoptosis resistance to TRAIL.
View Article and Find Full Text PDFDeletion of type I IFN genes and resistance to apoptosis induced by type I IFNs are common in glioblastoma. Here we have investigated the importance of the constitutive weak IFN-signaling in the apoptotic response to IFN-α in glioblastoma cells. U87MG cells hold a deletion of type I IFN genes, whereas in T98G cells the spontaneous IFN signaling is intact.
View Article and Find Full Text PDFAddition of polypeptides belonging to the ubiquitin family to selected lysines residues is a widespread post-translation modification (PTM) that controls many fundamental aspects of cell's life. Specific alterations in the normal turnover of this PTM are frequently observed in tumors. The conjugation/deconjugation cycle of ubiquitin (Ub) or ubiquitin-like (Ubl) proteins influences the activities of oncogenes and tumor suppressor genes.
View Article and Find Full Text PDFGene products that modify the apoptotic susceptibility of cancer cells may offer novel drug response markers or therapeutic targets. In this study, we probed the contribution of 53 different isopeptidases to apoptosis triggered by bortezomib and etoposide. USP18, a type I IFN-induced protein that deconjugates the ubiquitin-like modifier ISG15 from target proteins, was found to limit apoptotic susceptibility to IFN-alpha or bortezomib.
View Article and Find Full Text PDFInhibitors of the ubiquitin-proteasome system (UPSIs) promote apoptosis of cancer cells and show encouraging anti-tumor activities in vivo. In this study, we evaluated the death activities of two different UPSIs: bortezomib and the isopeptidase inhibitor G5. To unveil whether these compounds elicit different types of death, we compared their effect both on apoptosis-proficient wild type mouse embryo fibroblasts and on cells defective for apoptosis (double-deficient Bax/Bak mouse embryo fibroblasts) (double knockout; DKO).
View Article and Find Full Text PDFThe apoptotic protease activating factor (Apaf-1) is central to the regulatory mechanism by which procaspase-9 is activated in the cytochrome c-mediated pathway of apoptosis. For a detailed biochemical and structural investigation of Apaf-1 function, we have cloned and expressed in Escherichia coli inclusion bodies the WD40-deleted protein (DeltaWD40 Apaf-1) from HepG2 cell. The construct contains an N-terminal His6 tag derived from the cloning vector so that the mass of the protein and the tag together is 51,594 Da, as determined by TOF/TOF mass spectrometric analysis.
View Article and Find Full Text PDF