We demonstrate a switchable electrocatalysis mechanism modulated by hydrogen bonding interactions in ligand geometries. By manipulating these geometries, specific electrochemical processes at a single catalytic site can be selectively and precisely activated or deactivated. The α geometry enhances dioxygen electroreduction (ORR) while inhibiting protium redox processes, with the opposite effect seen in the β geometry.
View Article and Find Full Text PDFThe rising demand for portable energy conversion devices has spurred the advancement of direct liquid fuel cells (DLFCs) employing fuels such as alcohol, ammonia, hydrazine, and vitamin C. In these devices, various precious metal platforms have been explored to increase the de-electronation kinetics and reduce catalyst poisoning, but with substantial cost implications. We demonstrate the crucial role of ligands in non-precious organometallic complexes in influencing the de-electronation kinetics of fuel molecules through a unique substrate-ligand synergistic interaction.
View Article and Find Full Text PDFThe prevailing view about molecular catalysts is that the central metal ion is responsible for the reaction mechanism and selectivity, whereas the ligands mainly affect the reaction kinetics. Here, we question this paradigm and show that ligands have a dramatic influence on the selectivity of the product. We show how even a seemingly small change in ligand isomerization sharply alters the selectivity of the well-researched oxygen reduction reaction (ORR) Co phthalocyanine catalyst from an indirect 2e to a direct 4e pathway.
View Article and Find Full Text PDFContrary to conventional beliefs, we show how a functional ligand that does not exhibit any redox activity elevates the charge storage capability of an electric double layer a proton charge assembly. Compared to an unsubstituted ligand, a non-redox active carboxy ligand demonstrated nearly a 4-fold increase in charge storage, impressive capacitive retention even at a rate of 900C, and approximately a 2-fold decrease in leakage currents with an enhancement in energy density up to approximately 70% a non-electrochemical route of proton charge assembly. Generalizability of these findings is presented with various non-redox active functional units that can undergo proton charge assembly in the ligand.
View Article and Find Full Text PDFThe essence of any electrochemical system is engraved in its electrical double layer (EDL), and we report its unprecedented reorganization by the structural isomerism of molecules, with a direct consequence on their energy storage capability. Electrochemical and spectroscopic analyses in combination with computational and modelling studies demonstrate that an attractive field-effect due to the molecule's structural-isomerism, in contrast to a repulsive field-effect, spatially screens the ion-ion coulombic repulsions in the EDL and reconfigures the local density of anions. In a laboratory-level prototype supercapacitor, those with β-structural isomerism exhibit nearly 6-times elevated energy storage compared to the state-of-the-art electrodes, by delivering ∼535 F g at 1 A g while maintaining high performance metrics even at a rate as high as 50 A g.
View Article and Find Full Text PDFWe show that the ability of the ligand to reorganize the electric double layer (EDL) often dominates the electrocatalysis contrary to their inductive effect in the spectrochemical series, leading to counterintuitive electrocatalysis. With water oxidation and chlorine evolution as the probe reactions, the same catalytic entity with carboxy functionalized ligand exhibited surprisingly higher electrochemical activity in comparison to the aggressively electron-withdrawing nitro functionalized ligands, which is contrary to their actual location in the spectrochemical series. Spectroscopic and electrochemical analyses suggest the enrichment of catalytically active species in the carboxy substituted ligand via proton charge assembly in the EDL that in turn enhances the kinetics of the overall electrochemical process.
View Article and Find Full Text PDFWe have investigated the role of ligand isomerism in modulating the mechanisms and kinetics associated with charge/discharge chemistry of an aqueous metal-air battery. The dominant electron-withdrawing inductive effect (-I effect) and the diminished electron-withdrawing resonance effect (-R effect) in the α-NO isomer noticeably diminishes the rate of oxygen reduction (ORR) and oxygen evolution reactions (OER) on the catalytic Co-center. In their β-counterpart, the cumulative -I and -R effects noticeably enhance the OER and ORR kinetics on the same catalytic Co-center.
View Article and Find Full Text PDFRechargeable magnesium batteries are of considerable interest due to their high theoretical capacity, and they are projected as good alternates for stationary energy storage and electric vehicles. Sluggish Mg kinetics and scarce availability of suitable cathode materials are major issues hindering the progress of rechargeable magnesium batteries. Herein, a conjugated, off-planar, two-dimensional (2D) polymer is explored for reversible magnesium storage.
View Article and Find Full Text PDFWe report the independent role of isomerism of secondary sphere substituents over their nature, a factor often overlooked in molecular electrocatalysis pertaining to electrochemical sensing, by establishing that isomerism redefines the electronic structure at the catalytic reaction center via geometrical factors. UV-vis spectroscopy and X-ray photoelectron spectroscopy suggest that a substituent's isomerism in molecular catalysts conjoins molecular planarity and catalytic activation through competing field effects and resonance effects. As a classical example, we demonstrate the influence of isomerism of the -NO substituents for the electrocatalytic multi electron oxidation of As(III), a potentially important electrochemical pathway for water remediation and arsenic detection.
View Article and Find Full Text PDFThe role of electrocatalysts in energy storage/conversion, biomedical and environmental sectors, green chemistry, and much more has generated enormous interest in comprehending their structure-activity relations. While targeting the surface-to-volume ratio, exposing reactive crystal planes and interfacial modifications are time-tested considerations for activating metallic catalysts; it is primarily by substitution in molecular electrocatalysts. This account draws the distinction between a substituent's chemical identity and isomerism, when regioisomerism of the -NO substituent is conferred at the "α" and "β" positions on the macrocycle of cobalt phthalocyanines.
View Article and Find Full Text PDFHydrogen peroxide is a commodity chemical with immense applications as an environmentally benign disinfectant for water remediation, a green oxidant for synthetic chemistry and pulp bleaching, an energy carrier molecule and a rocket propellant. It is typically synthesized by indirect batch anthraquinone process, where sequential hydrogenation and oxidation of anthraquinone molecules generates HO. This highly energy demanding catalytic sequence necessitates the advent of new reaction pathways with lower energy expenditure.
View Article and Find Full Text PDFOrganic materials containing active carbonyl groups have attracted considerable attention as electrodes in Li-ion batteries due to their reversible redox activity, ability to retain capacity, and, in addition, their ecofriendly nature. Introduction of porosity will help accommodate as well as store small ions and molecules reversibly. In the present work, we introduce a mesoporous triptycene-related, rigid network polymer with high specific surface area as an electrode material for rechargeable Li-ion battery.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2017
Graphene oxide (GO) anisotropically conducts protons with directional dominance of in plane ionic transport (σ IP) over the through plane (σ TP). In a typical H-O fuel cell, since the proton conduction occurs through the plane during its generation at the fuel electrode, it is indeed inevitable to selectively accelerate GO's σ TP for advancement towards a potential fuel cell membrane. We successfully achieved ∼7 times selective amplification of GO's σ TP by tuning the polarity of the dopant molecule in its nanoporous matrix.
View Article and Find Full Text PDFThis report examines the assembly of chalcogenide organic molecules on various surfaces, focusing on cases when chemisorption is accompanied by carbon-chalcogen atom-bond scission. In the case of alkane and benzyl chalcogenides, this induces formation of a chalcogenized interface layer. This process can occur during the initial stages of adsorption and then, after passivation of the surface, molecular adsorption can proceed.
View Article and Find Full Text PDFHere we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture.
View Article and Find Full Text PDF