In recent years, almost all extraction processes in the perfume, cosmetic, pharmaceutical, food ingredients, nutraceuticals, biofuel and fine chemical industries rely massively on solvents, the majority of which have petroleum origins. The intricate processing steps involved in the industrial extraction cycle makes it increasingly difficult to predict the overall environmental impact; despite the tremendous energy consumption and the substantial usage of solvents, often the yields are indicated in decimals. The ideal alternative solvents suitable for green extraction should have high solvency, high flash points with low toxicity and low environmental impacts, be easily biodegradable, obtained from renewable (non-petrochemical) resources at a reasonable price and should be easy to recycle without any deleterious effect to the environment.
View Article and Find Full Text PDFMolecular dynamics simulations of the polycationic antimicrobial peptide dendrimer (Leu)8(DapLeu)4(DapPhe)2DapLys-NH2 binding to membranes suggest that electrostatic interactions with the polyanionic lipopolysaccharide (LPS) and conformational flexibility of the 2,3-diaminopropanoic acid (Dap) branching units drive its selective insertion into microbial membranes.
View Article and Find Full Text PDFMolecular dynamics simulations were used to study the effect of mechanical and thermal stimuli on the electrostatic properties of collagen model helices. Our model sequences were based on glycine proline and hydroxyproline amino acids. We find that longitudinal mechanical strain induces significant variation of the polarization of the collagen fibril.
View Article and Find Full Text PDFAggregated β-sheet structures are associated with amyloid and prion diseases. Techniques capable of revealing detailed structural and dynamical information on β-sheet structure are thus of great biomedical and biophysical interest. In this work, the infrared (IR) amide I spectral characteristics of stacked β-sheets were modeled using the transition dipole coupling model.
View Article and Find Full Text PDF