Hyperactivation of cyclin-dependent kinase 5 (Cdk5) by p25, contributes to neuroinflammation causing neurodegeneration in Parkinson's disease (PD) and Alzheimer's disease. However, the mechanism by which Cdk5 induces neuroinflammation in the PD brain is largely unexplored. Here, we show that Cdk5 phosphorylates cytosolic phospholipase A2 (cPLA2) at Thr-268 and Ser-505 sites lead to its activation and generation of eicosanoid products.
View Article and Find Full Text PDFThe cyclin-dependent kinase (CDK5) forms a stable complex with its activator p25, leading to the hyperphosphorylation of tau proteins and to the formation of plaques and tangles that are considered to be one of the typical causes of Alzheimer's disease (AD). Hence, the pathological CDK5-p25 complex is a promising therapeutic target for AD. Small peptides, obtained from the truncation of CDK5 physiological activator p35, have shown promise in inhibiting the pathological complex effectively while also crossing the blood-brain barrier.
View Article and Find Full Text PDFWe show that commercially sourced n-channel silicon field-effect transistors (nFETs) operating above their threshold voltage with closed loop feedback to maintain a constant channel current allow a pH readout resolution of (7.2 ± 0.3) × 10 at a bandwidth of 10 Hz, or ≈3-fold better than the open loop operation commonly employed by integrated ion-sensitive field-effect transistors (ISFETs).
View Article and Find Full Text PDFWe have demonstrated atomically thin, quantum capacitance-limited, field-effect transistors (FETs) that enable the detection of pH changes with 75-fold higher sensitivity (≈4.4 V per pH) over the Nernst value of 59 mV per pH at room temperature when used as a biosensor. The transistors, which are fabricated from monolayer films of MoS, use a room temperature ionic liquid (RTIL) in place of a conventional oxide gate dielectric and exhibit very low intrinsic noise resulting in a pH resolution of 92 × 10 at 10 Hz.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that affects motor nerve cells in the brain and the spinal cord. Etiological mechanisms underlying the disease remain poorly understood; recent studies suggest that deregulation of p25/Cyclin-dependent kinase 5 (Cdk5) activity leads to the hyperphosphorylation of Tau and neurofilament (NF) proteins in ALS transgenic mouse model (SOD1G37R). A Cdk5 involvement in motor neuron degeneration is supported by analysis of three SOD1G37R mouse lines exhibiting perikaryal inclusions of NF proteins and hyperphosphorylation of Tau.
View Article and Find Full Text PDFCellular localization, assembly and abnormal aggregation of neurofilaments depend on phosphorylation. Pathological processes associated with neurodegeneration exhibit aberrant accumulation of microtubule associated aggregated forms of hyperphosphorylated neuronal protein tau in cell bodies. These processes are critical for the disease progression in patients suffering from Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis.
View Article and Find Full Text PDFCyclin-dependent kinase 5 (Cdk5) is a key neuronal kinase that is upregulated during inflammation, and can subsequently modulate sensitivity to nociceptive stimuli. We conducted an in silico screen for Cdk5 phosphorylation sites within proteins whose expression was enriched in nociceptors and identified the chemo-responsive ion channel Transient Receptor Potential Ankyrin 1 (TRPA1) as a possible Cdk5 substrate. Immunoprecipitated full length TRPA1 was shown to be phosphorylated by Cdk5 and this interaction was blocked by TFP5, an inhibitor that prevents activation of Cdk5.
View Article and Find Full Text PDFSeveral studies have indicated that neuroinflammation is indeed associated with neurodegenerative disease pathology. However, failures of recent clinical trials of anti-inflammatory agents in neurodegenerative disorders have emphasized the need to better understand the complexity of the neuroinflammatory process in order to unravel its link with neurodegeneration. Deregulation of Cyclin-dependent kinase 5 (Cdk5) activity by production of its hyperactivator p25 is involved in the formation of tau and amyloid pathology reminiscent of Alzheimer's disease (AD).
View Article and Find Full Text PDFCdk5 is a key neuronal kinase necessary for proper brain development, which has recently been implicated in modulating nociception. Conditional deletion of Cdk5 in pain-sensing neurons attenuates pain responses to heat in both the periphery and orofacial regions. Cdk5 activity is regulated by binding to the activators p35 and p39, both of which possess a cyclin box.
View Article and Find Full Text PDFPhosphorylation of the C-terminal tail of the heavy neurofilament subunit (NF-H) impacts neurofilament (NF) axonal transport and residence within axons by fostering NF-NF associations that compete with transport. We tested the role of phosphorylation of a GSK-3β consensus site (S493) located in the proximal portion of the NF-H tail in NF dynamics by transfection of NB2a/d1 cells with NF-H, where S493 was mutated to aspartic acid (S493D) or to alanine (S493A) to mimic constitutive phosphorylation and non-phosphorylation. S493D underwent increased transport into axonal neurites, while S493A displayed increased perikaryal NF aggregates that were decorated by anti-kinesin.
View Article and Find Full Text PDFIt has been reported that cyclin-dependent kinase 5 (cdk5), a critical neuronal kinase, is hyperactivated in Alzheimer's disease (AD) and may be, in part, responsible for the hallmark pathology of amyloid plaques and neurofibrillary tangles (NFTs). It has been proposed by several laboratories that hyperactive cdk5 results from the overexpression of p25 (a truncated fragment of p35, the normal cdk5 regulator), which, when complexed to cdk5, induces hyperactivity, hyperphosphorylated tau/NFTs, amyloid-β plaques, and neuronal death. It has previously been shown that intraperitoneal (i.
View Article and Find Full Text PDFIn a series of studies, we have identified TFP5, a truncated fragment of p35, the Cdk5 kinase regulatory protein, which inhibits Cdk5/p35 and the hyperactive Cdk5/p25 activities in test tube experiments. In cortical neurons, however, and in vivo in Alzheimer's disease (AD) model mice, the peptide specifically inhibits the Cdk5/p25 complex and not the endogenous Cdk5/p35. To account for the selective inhibition of Cdk5/p25 activity, we propose that the "p10" N-terminal domain of p35, absent in p25, spares Cdk5/p35 because p10 binds to macromolecules (e.
View Article and Find Full Text PDFCyclin-dependent kinase 5 (CDK5) is a multifunctional serine/threonine kinase that regulates a large number of neuronal processes essential for nervous system development and function with its activator p35 CDK5R1. Upon neuronal insults, p35 is proteolyzed and cleaved to p25 producing deregulation and hyperactivation of CDK5 (CDK5/p25), implicated in tau hyperphosphorylation, a pathology in some neurodegenerative diseases. A truncated, 24 amino acid peptide, p5, derived from p35 inhibits the deregulated CDK5 phosphotransferase activity and ameliorates Alzheimer's disease (AD) phenotypes in AD model mice.
View Article and Find Full Text PDFCyclin-dependent kinase 5 (Cdk5) is a member of the serine-threonine kinase family of cyclin-dependent kinases. Cdk5 is critical to normal mammalian nervous system development and plays important regulatory roles in multiple cellular functions. Recent evidence indicates that Cdk5 is inappropriately activated in several neurodegenerative conditions, including Parkinson's disease (PD).
View Article and Find Full Text PDFWhen isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells.
View Article and Find Full Text PDFStudies of the giant axon and synapse of third-order neurons in the squid stellate ganglion have provided a vast literature on neuronal physiology and axon transport. Large neuronal size also lends itself to comparative biochemical studies of cell body versus axon. These have focused on the regulation of synthesis, assembly, posttranslational modification and function of neuronal cytoskeletal proteins (microtubules (MTs) and neurofilaments (NFs)), the predominant proteins in axoplasm.
View Article and Find Full Text PDFBesides the hallmark pathology of amyloid plaques and neurofibrillary tangles, it is well documented that cyclin-dependent kinase 5 (CDK5), a critical neuronal protein kinase in nervous system development, function, and survival, when deregulated and hyperactivated induces Alzheimer's disease (AD) and amyotrophic lateral sclerosis and Parkinson's disease-like phenotypes in mice. In a recent study, we demonstrated that p5, a small, truncated fragment of 24 amino acid residues derived from the CDK5 activator protein 35 (NCK5A, p35), selectively inhibited deregulated CDK5 hyperactivity and ameliorated AD phenotypes in model mice. In this study, we identified the most inhibitory elements in the p5 peptide fragment.
View Article and Find Full Text PDFParkinson's disease (PD) is a chronic neurodegenerative disorder characterized by the loss of dopamine neurons in the substantia nigra, decreased striatal dopamine levels, and consequent extrapyramidal motor dysfunction. Recent evidence indicates that cyclin-dependent kinase 5 (Cdk5) is inappropriately activated in several neurodegenerative conditions, including PD. To date, strategies to specifically inhibit Cdk5 hyperactivity have not been successful without affecting normal Cdk5 activity.
View Article and Find Full Text PDFHomeodomain transcription factors regulate development of embryos and cellular physiology in adult systems. Paired-type homeodomain genes constitute a subclass that has been particularly implicated in establishment of neuronal identity in the mammalian nervous system. We isolated fragments of eight homeodomain genes of this subclass expressed in the stellate ganglion of the North Atlantic long finned squid Loligo pealei (lp) [Note: Loligo pealei has been officially renamed Doryteuthis pealei.
View Article and Find Full Text PDFA method is proposed to study protein-ligand binding in a system governed by specific and nonspecific interactions. Strong associations lead to narrow distributions in the proteins configuration space; weak and ultraweak associations lead instead to broader distributions, a manifestation of nonspecific, sparsely populated binding modes with multiple interfaces. The method is based on the notion that a discrete set of preferential first-encounter modes are metastable states from which stable (prerelaxation) complexes at equilibrium evolve.
View Article and Find Full Text PDFC-terminal neurofilament phosphorylation mediates cation-dependent self-association leading to neurofilament incorporation into the stationary axonal cytoskeleton. Multiple kinases phosphorylate the C-terminal domains of the heavy neurofilament subunit (NF-H), including cyclin-dependent protein kinase 5 (CDK5), mitogen-activated protein kinases (MAPKs), casein kinase 1 and 2 (CK1 and CK2) and glycogen synthase kinase 3β (GSK3β). The respective contributions of these kinases have been confounded because they phosphorylate multiple substrates in addition to neurofilaments and display extensive interaction.
View Article and Find Full Text PDFProtein phosphorylation is the most common post-translational modification that regulates several pivotal functions in cells. Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine/threonine kinase which is mostly active in the nervous system. It regulates several biological processes such as neuronal migration, cytoskeletal dynamics, axonal guidance and synaptic plasticity among others.
View Article and Find Full Text PDFBackground: Cyclin-dependent kinase 5 (Cdk5) is a unique member of the serine/threonine kinase family. This kinase plays an important role in neuronal development, and deregulation of its activity leads to neurodegenerative disorders. Cdk5 also serves an important function in the regulation of nociceptive signaling.
View Article and Find Full Text PDFMultiple lines of evidence link the incidence of diabetes to the development of Alzheimer's disease (AD). Patients with diabetes have a 50 to 75% increased risk of developing AD. Cyclin dependent kinase 5 (Cdk5) is a serine/threonine protein kinase, which forms active complexes with p35 or p39, found principally in neurons and in pancreatic β cells.
View Article and Find Full Text PDF