Publications by authors named "Haris Nalakath Abubackar"

The process industries play a significant role in boosting the economy of any nation. However, poor management in several industries has been posing worrisome threats to an environment that was previously immaculate. As a result, the untreated waste and wastewater discarded by many industries contain abundant organic matter and other toxic chemicals.

View Article and Find Full Text PDF

The impetus to predicting future biomass consumption focuses on sustainable energy, which concerns the non-renewable nature of fossil fuels and the environmental challenges associated with fossil fuel burning. However, the production of rice residue in the form of rice husk (RH) and rice straw (RS) has brought an array of benefits, including its utilization as biofuel to augment or replace fossil fuel. Rice residue characterization, valorization, and techno-economic analysis require a comprehensive review to maximize its inherent energy conversion potential.

View Article and Find Full Text PDF

Microbial fuel cells (MFCs) are an emerging technology for converting organic waste into electricity, thus providing potential solution to energy crises along with eco-friendly wastewater treatment. The electrode properties and biocatalysts are the major factors affecting electricity production in MFC. The electrons generated during microbial metabolism are captured by the anode and transferred towards the cathode via an external circuit, causing the flow of electricity.

View Article and Find Full Text PDF

Microbial C1 gas conversion technologies have developed into a potentially promising technology for converting waste gases (CO, CO) into chemicals, fuels, and other materials. However, the mass transfer constraint of these poorly soluble substrates to microorganisms is an important challenge to maximize the efficiencies of the processes. These technologies have attracted significant scientific interest in recent years, and many reactor designs have been explored.

View Article and Find Full Text PDF

Several anaerobic bioconversion technologies produce short chain volatile fatty acids and sometimes ethanol, which can together be elongated to hexanoic acid (C6 acid) by Clostridium kluyveri in a secondary fermentation process. Initiatives are needed to further optimize the process. Therefore, five strategies were tested aiming at elucidating their influence on hexanoic acid production from mixtures of acetic acid, butyric acid and ethanol.

View Article and Find Full Text PDF

The ethanol production capability of Clostridium aceticum was investigated and optimized, in order to evaluate the ability of that organism to produce high concentrations of fuel-ethanol. The results showed that C. aceticum can produce significant amounts of ethanol when a natural pH drop occurs in the fermentation broth as a consequence of acetic acid production in a first stage.

View Article and Find Full Text PDF

A two-stage continuous system with two stirred tank reactors in series was utilized to perform syngas fermentation using Clostridium carboxidivorans. The first bioreactor (bioreactor 1) was maintained at pH 6 to promote acidogenesis and the second one (bioreactor 2) at pH 5 to stimulate solventogenesis. Both reactors were operated in continuous mode by feeding syngas (CO:CO:H:N; 30:10:20:40; vol%) at a constant flow rate while supplying a nutrient medium at different flow rates of 8.

View Article and Find Full Text PDF

Syngas bioconversion is a promising method for bioethanol production, but some VFA remains at the end of fermentation. A two-stage process was set-up, including syngas fermentation as first stage under strict anaerobic conditions using C. autoethanogenum as inoculum, with syngas (CO/CO/H/N, 30/10/20/40) as gaseous substrate.

View Article and Find Full Text PDF

Bioprocesses in conventional second generation biorefineries are mainly based on the fermentation of sugars obtained from lignocellulosic biomass or agro-industrial wastes. An alternative to this process consists in gasifying those same feedstocks or even other carbon-containing materials to obtain syngas which can also be fermented by some anaerobic bacteria to produce chemicals or fuels. Carbon monoxide, carbon dioxide and hydrogen, which are the main components of syngas, are also found in some industrial waste gases, among others in steel industries.

View Article and Find Full Text PDF

Butanol production from carbon monoxide-rich waste gases or syngas is an attractive novel alternative to the conventional acetone-butanol-ethanol (ABE) fermentation. Solvent toxicity is a key factor reported in ABE fermentation with carbohydrates as substrates. However, in the gas-fermentation process, kinetic aspects and the inhibition effect of solvents have not thoroughly been studied.

View Article and Find Full Text PDF

The fermentation of waste gases rich in carbon monoxide using acetogens is an efficient way to obtain valuable biofuels like ethanol and butanol. Different experiments were carried out with the bacterial species Clostridium carboxidivorans as biocatalyst. In batch assays with no pH regulation, after complete substrate exhaustion, acetic acid, butyric acid, and ethanol were detected while only negligible butanol production was observed.

View Article and Find Full Text PDF

Fermentation of CO or syngas offers an attractive route to produce bioethanol. However, during the bioconversion, one of the challenges to overcome is to reduce the production of acetic acid in order to minimize recovery costs. Different experiments were done with Clostridium autoethanogenum.

View Article and Find Full Text PDF

The effect of different sources of nitrogen as well as their concentrations on the bioconversion of carbon monoxide to metabolic products such as acetic acid and ethanol by Clostridium autoethanogenum was studied. In a first set of assays, under batch conditions, either NH4Cl, trypticase soy broth or yeast extract (YE) were used as sources of nitrogen. The use of YE was found statistically significant (p < 0.

View Article and Find Full Text PDF

A two-level full factorial design was carried out in order to investigate the effect of four factors on the bioconversion of carbon monoxide to ethanol and acetic acid by Clostridium autoethanogenum: initial pH (4.75-5.75), initial total pressure (0.

View Article and Find Full Text PDF