A key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed.
View Article and Find Full Text PDFETX2514 is a non-β-lactam serine β-lactamase inhibitor in clinical development that has greater potency and broader spectrum of β-lactamase inhibition than the related diazabicyclooctanone avibactam. Despite opening of its cyclic urea ring upon acylation, avibactam can recyclize and dissociate intact from certain β-lactamases. We investigated reversibility of ETX2514 acylation of 10 serine β-lactamases representing Ambler classes A, C, and D.
View Article and Find Full Text PDFA main challenge in the development of new agents for the treatment of Pseudomonas aeruginosa infections is the identification of chemotypes that efficiently penetrate the cell envelope and are not susceptible to established resistance mechanisms. Siderophore-conjugated monocarbams are attractive because of their ability to hijack the bacteria's iron uptake machinery for transport into the periplasm and their inherent stability to metallo-β-lactamases. Through development of the SAR we identified a number of modifications to the scaffold that afforded active anti-P.
View Article and Find Full Text PDFTo identify new agents for the treatment of multi-drug-resistant Pseudomonas aeruginosa, we focused on siderophore-conjugated monocarbams. This class of monocyclic β-lactams are stable to metallo-β-lactamases and have excellent P. aeruginosa activities due to their ability to exploit the iron uptake machinery of Gram-negative bacteria.
View Article and Find Full Text PDFThe Class D (or OXA-type) β-lactamases have expanded to be the most diverse group of serine β-lactamases with a highly heterogeneous β-lactam hydrolysis profile and are typically resistant to marketed β-lactamase inhibitors. Class D enzymes are increasingly found in multidrug resistant (MDR) Acinetobacter baumannii, Pseudomonas aeruginosa, and various species of the Enterobacteriaceae and are posing a serious threat to the clinical utility of β-lactams including the carbapenems, which are typically reserved as the drugs of last resort. Avibactam, a novel non-β-lactam β-lactamase inhibitor, not only inhibits all class A and class C β-lactamases but also has the promise of inhibition of certain OXA enzymes, thus extending the antibacterial activity of the β-lactam used in combination to the organisms that produce these enzymes.
View Article and Find Full Text PDFIn an attempt to identify novel inhibitors of NAD(+)-dependent DNA ligase (LigA) that are not affected by a known resistance mutation in the adenosine binding pocket, a detailed analysis of the binding sites of a variety of bacterial ligases was performed. This analysis revealed several similarities to the adenine binding region of kinases, which enabled a virtual screen of known kinase inhibitors. From this screen, a thienopyridine scaffold was identified that was shown to inhibit bacterial ligase.
View Article and Find Full Text PDFAvibactam is a non-β-lactam β-lactamase inhibitor with a spectrum of activity that includes β-lactamase enzymes of classes A, C, and selected D examples. In this work acylation and deacylation rates were measured against the clinically important enzymes CTX-M-15, KPC-2, Enterobacter cloacae AmpC, Pseudomonas aeruginosa AmpC, OXA-10, and OXA-48. The efficiency of acylation (k2/Ki) varied across the enzyme spectrum, from 1.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2012
Avibactam is a β-lactamase inhibitor that is in clinical development, combined with β-lactam partners, for the treatment of bacterial infections comprising gram-negative organisms. Avibactam is a structural class of inhibitor that does not contain a β-lactam core but maintains the capacity to covalently acylate its β-lactamase targets. Using the TEM-1 enzyme, we characterized avibactam inhibition by measuring the on-rate for acylation and the off-rate for deacylation.
View Article and Find Full Text PDFThe NAD-dependent DNA ligase is an excellent target for the discovery of antibacterial agents with a novel mode of action. In this work the DNA ligase from Streptococcus pneumoniae was investigated for its steady-state kinetic parameters and inhibition by compounds with an adenosine substructure. Inhibition by substrate DNA that was observed in the enzyme turnover experiments was verified by direct binding measurements using isothermal titration calorimetry (ITC).
View Article and Find Full Text PDFPeptidoglycan biosynthesis is an essential process in bacteria and is therefore a suitable target for the discovery of new antibacterial drugs. One of the last cytoplasmic steps of peptidoglycan biosynthesis is catalyzed by the integral membrane protein MraY, which attaches soluble UDP-N-acetylmuramoyl-pentapeptide to the membrane-bound acceptor undecaprenyl phosphate. Although several natural product-derived inhibitors of MraY are known, none have the properties necessary to be of clinical use as antibacterial drugs.
View Article and Find Full Text PDFA novel assay for the NADPH-dependent bacterial enzyme UDP-N-acetylenolpyruvylglucosamine reductase (MurB) is described that has nanomolar sensitivity for product formation and is suitable for high-throughput applications. MurB catalyzes an essential cytoplasmic step in the synthesis of peptidoglycan for the bacterial cell wall, reduction of UDP-N-acetylenolpyruvylglucosamine to UDP-N-acetylmuramic acid (UNAM). Interruption of this biosynthetic pathway leads to cell death, making MurB an attractive target for antibacterial drug discovery.
View Article and Find Full Text PDFThe degree of supercoiling of DNA is vital for cellular processes, such as replication and transcription. DNA topology is controlled by the action of DNA topoisomerase enzymes. Topoisomerases, because of their importance in cellular replication, are the targets of several anticancer and antibacterial drugs.
View Article and Find Full Text PDFAn enzyme activity assay, based on mass spectrometric (MS) detection of specific reaction product following HPLC separation, has been developed to evaluate pharmaceutical hits identified from primary high throughput screening (HTS) against target enzyme Escherichia coli UDP-N-acetyl-muramyl-L-alanine ligase (MurC), an essential enzyme in the bacterial peptidoglycan biosynthetic pathway, and to study the kinetics of the enzyme. A comparative analysis of this new liquid chromatographic-MS (LC-MS) based assay with a conventional spectrophotometric Malachite Green (MG) assay, which detects phosphate produced in the reaction, was performed. The results demonstrated that the LC-MS assay, which determines specific ligase activity of MurC, offers several advantages including a lower background (0.
View Article and Find Full Text PDF