The high utility of halogenated organic compounds has prompted the development of numerous transformations that install the carbon-halogen motif. Halogen functionalities, deemed as "functional and functionalizable" molecules due to their capacity to modulate diverse internal properties, constitute a pivotal strategy in drug discovery and development. Traditional routes to these building blocks have commonly involved multiple steps, harsh reaction conditions, and the use of stoichiometric and/or toxic reagents.
View Article and Find Full Text PDFUnlike its other halogen atom siblings, chlorination of a bioactive compound can change its physiological characteristics, improve its pharmacological profile, and function as a point of diversification through cross-coupling reactions. As a result, it has been a crucial strategy for drug discovery and development. However, functional groups such as amines, amides, hydroxy groups, or carboxylic acids trap the Cl , severely limiting the reactivity and making direct chlorination far too difficult to be practical.
View Article and Find Full Text PDFAlkoxyamide has been reported as a catalyst for the activation of N-bromosuccinimide to perform bromocyclization and bromination of a wide range of substrates in a lipophilic solvent, where adequate suppression of the background reactions was observed. The key feature of the active site is the alkoxy group attached to the sulfonamide moiety, which facilitates the acceptance as well as the delivery of bromonium species from the bromine source to the substrates.
View Article and Find Full Text PDF