Current guidelines indicate that the effects of oxidation should be included as part of forced degradation studies on protein drugs. We probed the effect of 3 commonly used oxidants, hydrogen peroxide, tert-butyl hydroperoxide, and 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH), on a therapeutic monoclonal IgG1 antibody (mAb8). Upon oxidation, mAb8 did not show noticeable changes in its secondary structure but showed minor changes in tertiary structure.
View Article and Find Full Text PDFPhotostability testing of therapeutic proteins is a critical requirement in the development of biologics. Upon exposure to light, pharmaceutical proteins may undergo a change in structure, stability, and functional properties that could have a potential impact on safety and efficacy. In this work, we studied how exposure to light, according to ICH guidelines, leads to photo-oxidation of a therapeutic IgG1 mAb.
View Article and Find Full Text PDFPace et al. (1995) [1] recommended an equation used to predict extinction coefficient of a protein. However, no antibody data was included in the development of this equation.
View Article and Find Full Text PDFThe strategy for a comparability assessment is developed on a hierarchical risk-based approach. Critical analysis of physicochemical and biological characterization assays is essential for the development of a good comparability protocol. Therefore, selection and sensitivity of these assays is very important.
View Article and Find Full Text PDFCurr Pharm Biotechnol
December 2009
This study demonstrates that arginine is a highly effective solvent additive which significantly reduces the light induced aggregation of four IgG1 type monoclonal antibodies (named as IMC-1A, IMC-1B, IMC-1C and IMC-1D) as measured by size exclusion chromatography. All experiments were performed in a phosphate buffer system containing either sodium chloride or arginine hydrochloride. The protein samples were exposed to light in a photo chamber according to ICH (International Conference on Harmonization) guidelines.
View Article and Find Full Text PDFThe purpose of this study was to dramatically enhance the solubility (> 400 fold) and stability of a therapeutic protein (Fibroblast Growth Factor 20) and to perform detailed biophysical characterization for the optimization of its formulation. The solubility of FGF-20 strongly depends on pH, arginine concentration and anions present in a buffer system. In the absence and presence of arginine, solubility was higher at lower pH (5 < or = pH < or = 6) and then decreased steadily with a minimum solubility at around pH 6.
View Article and Find Full Text PDFThis study discusses the effect of key factors like containers, buffers and the freeze (controlled vs. flash freezing) and thawing processes on the stability of a therapeutic protein fibroblast growth factor 20 (FGF-20). The freezing profiles monitored by 15 temperature probes located at different regions in a 2-L bottle during freezing can be grouped into three categories.
View Article and Find Full Text PDFPrevious results indicate that the folding pathways of cytochrome c and other proteins progressively build the target native protein in a predetermined stepwise manner by the sequential formation and association of native-like foldon units. The present work used native state hydrogen exchange methods to investigate a structural anomaly in cytochrome c results that suggested the concerted folding of two segments that have little structural relationship in the native protein. The results show that the two segments, an 18-residue omega loop and a 10-residue helix, are able to unfold and refold independently, which allows a branch point in the folding pathway.
View Article and Find Full Text PDFPrevious work used hydrogen exchange (HX) experiments in kinetic and equilibrium modes to study the reversible unfolding and refolding of cytochrome c (Cyt c) under native conditions. Accumulated results now show that Cyt c is composed of five individually cooperative folding units, called foldons, which unfold and refold as concerted units in a stepwise pathway sequence. The first three steps of the folding pathway are linear and sequential.
View Article and Find Full Text PDFHydrogen exchange results for cytochrome c and several other proteins show that they are composed of a number of foldon units which continually unfold and refold and account for some functional properties. Previous work showed that one Omega-loop foldon controls the rate of the structural switching and ligand exchange behavior of cytochrome c known as the alkaline transition. The present work tests the role of foldons in the alkaline transition equilibrium.
View Article and Find Full Text PDFEquilibrium and kinetic hydrogen exchange experiments show that cytochrome c is composed of five foldon units that continually unfold and refold even under native conditions. Folding proceeds by the stepwise assembly of the foldon units rather than one amino acid at a time. The folding pathway is determined by a sequential stabilization process; previously formed foldons guide and stabilize subsequent foldons to progressively build the native protein.
View Article and Find Full Text PDFThe equilibrium unfolding transitions of Cro repressor variants, dimeric variant Cro F58W and monomer Cro K56[DGEVK]F58W, have been studied by urea and guanidine hydrochloride to probe the folding mechanism. The unfolding transitions of a dimeric variant are well described by a two state process involving native dimer and unfolded monomer with a free energy of unfolding, DeltaG(0,un)(0), of approximately 10-11 kcal/mol. The midpoint of transition curves is dependent on total protein concentration and DeltaG(0,un)(0) is independent of protein concentration, as expected for this model.
View Article and Find Full Text PDFThe sodium perchlorate-induced conformational transition of Staphylococcal nuclease has been monitored by both circular dichroism (CD) and fluorescence spectroscopy. The perchlorate-induced transition is cooperative as observed by both spectroscopic signals. However, the protein loses only about one-third of its native far-UV CD signal at high perchlorate concentrations, indicating that a significant amount of secondary structure remains in the post-transition state.
View Article and Find Full Text PDFNative state hydrogen exchange experiments have shown that the cytochrome c (Cyt c) protein consists of five cooperative folding-unfolding units, called foldons. These are named, in the order of increasing unfolding free energy, the nested-Yellow, Red, Yellow, Green, and Blue foldons. Previous results suggest that these units unfold in a stepwise sequential way so that each higher energy partially unfolded form includes all of the previously unfolded lower free energy units.
View Article and Find Full Text PDFThe alkaline transition of cytochrome c is a model for protein structural switching in which the normal heme ligand is replaced by another group. Stopped flow data following a jump to high pH detect two slow kinetic phases, suggesting two rate-limiting structure changes. Results described here indicate that these events are controlled by the same structural unfolding reactions that account for the first two steps in the reversible unfolding pathway of cytochrome c.
View Article and Find Full Text PDFExperiments were done to study the dynamic structural motions that determine protein hydrogen exchange (HX) behavior. The replacement of a solvent-exposed lysine residue with glycine (Lys8Gly) in a helix of recombinant cytochrome c does not perturb the native structure, but it entropically potentiates main-chain flexibility and thus can promote local distortional motions and large-scale unfolding. The mutation accelerates amide hydrogen exchange of the mutated residue by about 50-fold, neighboring residues in the same helix by less, and residues elsewhere in the protein not at all, except for Leu98, which registers the change in global stability.
View Article and Find Full Text PDFFluorescence quenching studies on the PII isoenzyme of yeast hexokinase have been performed using charged as well as polar uncharged quenchers. In both 'open' (i.e.
View Article and Find Full Text PDFConformation of a nonhydrolyzable adenosine triphosphate (ATP) analogue, adenylyl-(beta,gamma-methylene)-diphosphonate (AMPPCP) bound at the active site of yeast hexokinase-PII was determined by proton two-dimensional transferred nuclear Overhauser effect spectroscopy (TRNOESY) and molecular dynamics simulations. The effect of the glucose-induced domain closure on the conformation of the nucleotide was evaluated by making measurements on two different complexes: PII AMPPCPMg(II) and PII-Glc.AMPPCPMg(Il).
View Article and Find Full Text PDF