Bacterial colonization of acute and chronic wounds is often associated with delayed wound healing and prolonged hospitalization. The rise of multi-drug resistant bacteria and the poor biocompatibility of topical antimicrobials warrant safe and effective antimicrobials. Antimicrobial agents that target microbial membranes without interfering with the mammalian cell proliferation and migration hold great promise in the treatment of traumatic wounds.
View Article and Find Full Text PDFDesigning biocompatible nanofibrous mats capable of preventing microbial colonization from resident and nosocomial bacteria for an extended period remains an unmet clinical need. In the present work, we designed antibiotic free durable antimicrobial nanofiber mats by taking advantage of synergistic interactions between polydopamine (pDA) and metal ions with varying degree of antimicrobial properties (Ag, Mg, Ca, and Zn). Microscopic analysis showed successful pDA-mediated cross-linking of the gelatin nanofibers, which further improved by the inclusion of Ag, Mg, and Ca ions as supported by mechanical and thermal studies.
View Article and Find Full Text PDFIntroduction: In search for cross-linkers with multifunctional characteristics, the present work investigated the utility of quaternary ammonium organosilane (QOS) as a potential cross-linker for electrospun collagen nanofibers. We hypothesized that the quaternary ammonium ions improve the electrospinnability by reducing the surface tension and confer antimicrobial properties, while the formation of siloxane after alkaline hydrolysis could cross-link collagen and stimulate cell proliferation.
Materials And Methods: QOS collagen nanofibers were electrospun by incorporating various concentrations of QOS (0.
Catheter associated infections (CAIs) are the major cause of nosocomial infections leading to increased morbidity, mortality rates and economical loss. Though the antibiotic coated surface modified catheters are reported to be effective in preventing CAIs, presence of sub-lethal concentrations of antibiotics in long term instilled catheters poses a risk of development and spread of drug resistant microbial strains. Herein, we have developed an antibiotic-free alternative strategy to coat catheter surfaces using pyrogallol (PG) and metal ions (Ag/Mg).
View Article and Find Full Text PDFThe mammalian and microbial cell selectivity of synthetic and biosynthetic cationic polymers has been investigated. Among the polymers with peptide backbones, polymers containing amino side chains display greater antimicrobial activity than those with guanidine side chains, whereas ethylenimines display superior activity over allylamines. The biosynthetic polymer ε-polylysine (εPL) is noncytotoxic to primary human dermal fibroblasts at concentrations of up to 2,000 μg/ml, suggesting that the presence of an isopeptide backbone has greater cell selectivity than the presence of α-peptide backbones.
View Article and Find Full Text PDFThere is a growing demand for durable advanced wound dressings for the management of persistent infections after deep burn injuries. Herein, we demonstrated the preparation of durable antimicrobial nanofiber mats, by taking advantage of strong interfacial interactions between polyhydroxy antibiotics (with varying number of OH groups) and gelatin and their in-situ crosslinking with polydopamine (pDA) using ammonium carbonate diffusion method. Polydopamine crosslinking did not interfere with the antimicrobial efficacy of the loaded antibiotics.
View Article and Find Full Text PDFElectrospinning of naturally occurring biopolymers for biological applications requires postspinning cross-linking for endurance in protease-rich microenvironments and prevention of rapid dissolution. The most commonly used cross-linkers often generate cytotoxic byproducts, which necessitate high concentrations or time-consuming procedures. Herein, we report the addition of "safe" catecholamine cross-linkers to collagen or gelatin dope solutions followed by electrospinning yielded junction-containing nanofibrous mats.
View Article and Find Full Text PDFUnlabelled: We report here structure-property relationship between linear and branched polyethylene imines by examining their antimicrobial activities against wide range of pathogens. Both the polymers target the cytoplasmic membrane of bacteria and yeasts, eliciting rapid microbicidal properties. Using multiscale molecular dynamic simulations, we showed that, in both fully or partially protonated forms LPEI discriminates between mammalian and bacterial model membranes whereas BPEI lacks selectivity for both the model membranes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
In an era of relentless evolution of antimicrobial resistance, there is an increasing demand for the development of efficient antimicrobial coatings or surfaces for food, biomedical, and industrial applications. This study reports the laccase-catalyzed room-temperature synthesis of mechanically robust, thermally stable, broad spectrum antimicrobial films employing interfacial interactions between poly(vinyl alcohol), PVA, and 14 naturally occurring catecholamines and polyphenols. The oxidative products of catecholamines and polyphenols reinforce the PVA films and also alter their surface and bulk properties.
View Article and Find Full Text PDF