The neurons of the melanocortin system regulate feeding and energy homeostasis through a combination of electrical and endocrine mechanisms. However, the molecular basis for this functional heterogeneity is poorly understood. Here, a voltage-gated potassium (Kv) channel named KCNB1 (alias Kv2.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
November 2024
Background & Aims: Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid assimilation and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism.
View Article and Find Full Text PDFDifferent modifications of the standard bread recipe have been proposed to improve its nutritional and health benefits. Here, we utilized the Human Gut Simulator (HGS) to assess the fermentation of one such artisan bread by human gut microbiota. Dried and milled bread, composed of almond flour, psyllium husks, and flax seeds as its three main ingredients, was first subjected to an protocol designed to mimic human oro-gastro-intestinal digestion.
View Article and Find Full Text PDFBackground And Aims: Stearoyl-CoA desaturase-1 (SCD1) converts saturated fatty acids into monounsaturated fatty acids and plays an important regulatory role in lipid metabolism. Previous studies have demonstrated that mice deficient in SCD1 are protected from diet-induced obesity and hepatic steatosis due to altered lipid esterification and increased energy expenditure. Previous studies in our lab have shown that intestinal SCD1 modulates intestinal and plasma lipids and alters cholesterol metabolism.
View Article and Find Full Text PDFOxidative stress-induced DNA base modifications, if unrepaired, can increase mutagenesis and genomic instability, ultimately leading to cell death. Cells predominantly use the base excision repair (BER) pathway to repair oxidatively-induced non-helix distorting lesions. BER is initiated by DNA glycosylases, such as 8-oxoguanine DNA glycosylase (OGG1), which repairs oxidatively modified guanine bases, including 7,8-dihydro-8-oxoguanine (8-oxoG) and ring-opened formamidopyrimidine lesions, 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG).
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2023
Nonshivering thermogenesis in rodents requires macronutrients to fuel the generation of heat during hypothermic conditions. In this study, we examined the role of the nutrient sensing kinase, general control nonderepressible 2 (GCN2) in directing adaptive thermogenesis during acute cold exposure in mice. We hypothesized that GCN2 is required for adaptation to acute cold stress via activation of the integrated stress response (ISR) resulting in liver production of FGF21 and increased amino acid transport to support nonshivering thermogenesis.
View Article and Find Full Text PDFRelationships between novel phenotypic behaviors and specific genetic alterations are often discovered using target-specific, directed mutagenesis or phenotypic selection following chemical mutagenesis. An alternative approach is to exploit deficiencies in DNA repair pathways that maintain genetic integrity in response to spontaneously induced damage. Mice deficient in the DNA glycosylase NEIL1 show elevated spontaneous mutations, which arise from translesion DNA synthesis past oxidatively induced base damage.
View Article and Find Full Text PDFIntegrating warm-season grasses into cool-season equine grazing systems can increase pasture availability during summer months. The objective of this study was to evaluate effects of this management strategy on the fecal microbiome and relationships between fecal microbiota, forage nutrients, and metabolic responses of grazing horses. Fecal samples were collected from 8 mares after grazing cool-season pasture in spring, warm-season pasture in summer, and cool-season pasture in fall as well as after adaptation to standardized hay diets prior to spring grazing and at the end of the grazing season.
View Article and Find Full Text PDFBackground: 7,8-dihydroxyflavone (DHF) is a naturally occurring flavonoid found in , , and species that confers protection against high-fat diet (HFD) induced metabolic pathologies selectively in female mice. We have previously reported that this metabolic protection is associated with early and stable remodeling of the intestinal microbiome, evident in female but not male DHF-supplemented mice. Early changes in the gut microbiome in female DHF-fed mice were highly predictive of subsequent metabolic protection, suggesting a causative association between the gut microbiome and the metabolic effects of DHF.
View Article and Find Full Text PDFRegulation of the pyruvate dehydrogenase (PDH) complex by the pyruvate dehydrogenase kinase PDK4 enables the heart to respond to fluctuations in energy demands and substrate availability. Retinoic acid, the transcriptionally active form of vitamin A, is known to be involved in the regulation of cardiac function and growth during embryogenesis as well as under pathological conditions. Whether retinoic acid also maintains cardiac health under physiological conditions is unknown.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) escaping stressed mitochondria provokes inflammation via cGAS-STING pathway activation and, when oxidized (Ox-mtDNA), it binds cytosolic NLRP3, thereby triggering inflammasome activation. However, it is unknown how and in which form Ox-mtDNA exits stressed mitochondria in non-apoptotic macrophages. We found that diverse NLRP3 inflammasome activators rapidly stimulated uniporter-mediated calcium uptake to open mitochondrial permeability transition pores (mPTP) and trigger VDAC oligomerization.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
September 2022
Stearoyl-CoA desaturase-1 is an endoplasmic reticulum (ER)-membrane resident protein that inserts a double bond into saturated fatty acids, converting them into their monounsaturated counterparts. Previous studies have demonstrated an important role for SCD1 in modulating tissue and systemic health. Specifically, lack of hepatic or cutaneous SCD1 results in significant reductions in tissue esterified lipids.
View Article and Find Full Text PDFIntestinal fatty acid-binding protein (IFABP; FABP2) and liver fatty acid-binding protein (LFABP; FABP1) are small intracellular lipid-binding proteins. Deficiency of either of these proteins in mice leads to differential changes in intestinal lipid transport and metabolism, and to markedly divergent changes in whole-body energy homeostasis. The gut microbiota has been reported to play a pivotal role in metabolic process in the host and can be affected by host genetic factors.
View Article and Find Full Text PDFObesity and related metabolic disorders are pressing public health concerns, raising the risk for a multitude of chronic diseases. Obesity is multi-factorial disease, with both diet and lifestyle, as well as genetic and developmental factors leading to alterations in energy balance. In this regard, a novel role for DNA repair glycosylases in modulating risk for obesity has been previously established.
View Article and Find Full Text PDF7,8-Dihydroxyflavone (DHF) is a naturally occurring flavonoid that has been reported to protect against a variety of pathologies. Chronic administration of DHF prevents high-fat diet (HFD)-induced obesity in female, but not male, mice. However, the mechanisms underlying this sexual dimorphism have not been elucidated.
View Article and Find Full Text PDFLecithin:retinol acyltransferase and retinol-binding protein enable vitamin A (VA) storage and transport, respectively, maintaining tissue homeostasis of retinoids (VA derivatives). The precarious VA status of the lecithin:retinol acyltransferase-deficient (Lrat) retinol-binding protein-deficient (Rbp) mice rapidly deteriorates upon dietary VA restriction, leading to signs of severe vitamin A deficiency (VAD). As retinoids impact gut morphology and functions, VAD is often linked to intestinal pathological conditions and microbial dysbiosis.
View Article and Find Full Text PDFCells sustain constant oxidative stress from both exogenous and endogenous sources. When unmitigated by antioxidant defenses, reactive oxygen species damage cellular macromolecules, including DNA. Oxidative lesions in both nuclear and mitochondrial DNA are repaired via the base excision repair (BER) pathway, initiated by DNA glycosylases.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2021
Combined exposure to dietary nutrients and environmental chemicals may elicit significantly different physiological effects than single exposures. Exposure to dietary saturated fats and environmental toxins is a physiologically-significant dual exposure that is particularly associated with lower socioeconomic status, potentially placing these individuals at heightened risk of xenobiotic toxicities. However, no prior studies have examined interactions between specific lipids and environmental xenobiotics in modulating cellular health.
View Article and Find Full Text PDFOGG1-deficient (Ogg1-/-) animals display increased propensity to age-induced and diet-induced metabolic diseases, including insulin resistance and fatty liver. Since the intestinal microbiome is increasingly understood to play a role in modulating host metabolic responses, we examined gut microbial composition in Ogg1-/- mice subjected to different nutritional challenges. Interestingly, Ogg1-/- mice had a markedly altered intestinal microbiome under both control-fed and hypercaloric diet conditions.
View Article and Find Full Text PDFDNA Repair (Amst)
September 2019
Cellular damage produced by conditions generating oxidative stress have far-reaching implications in human disease that encompass, but are not restricted to aging, cardiovascular disease, type 2 diabetes, airway inflammation/asthma, cancer, and metabolic syndrome including visceral obesity, insulin resistance, fatty liver disease, and dyslipidemia. Although there are numerous sources and cellular targets of oxidative stress, this review will highlight literature that has investigated downstream consequences of oxidatively-induced DNA damage in both nuclear and mitochondrial genomes. The presence of such damage can in turn, directly and indirectly modulate cellular transcriptional and repair responses to such stressors.
View Article and Find Full Text PDFAs the primary cellular location for respiration and energy production, mitochondria serve in a critical capacity to the cell. Yet, by virtue of this very function of respiration, mitochondria are subject to constant oxidative stress that can damage one of the unique features of this organelle, its distinct genome. Damage to mitochondrial DNA (mtDNA) and loss of mitochondrial genome integrity is increasingly understood to play a role in the development of both severe early-onset maladies and chronic age-related diseases.
View Article and Find Full Text PDFObesity and related metabolic pathologies represent a significant public health concern. Obesity is associated with increased oxidative stress that damages genomic and mitochondrial DNA. Oxidatively-induced lesions in both DNA pools are repaired via the base-excision repair pathway, initiated by DNA glycosylases such as 8-oxoguanine DNA glycosylase (OGG1).
View Article and Find Full Text PDFOxidative stress resulting from endogenous and exogenous sources causes damage to cellular components, including genomic and mitochondrial DNA. Oxidative DNA damage is primarily repaired via the base excision repair pathway that is initiated by DNA glycosylases. 8-oxoguanine DNA glycosylase (OGG1) recognizes and cleaves oxidized and ring-fragmented purines, including 8-oxoguanine, the most commonly formed oxidative DNA lesion.
View Article and Find Full Text PDFCell-specific expression of many genes is conveyed by multiple enhancers, with each individual enhancer controlling a particular expression domain. In contrast, multiple enhancers drive similar expression patterns of some genes involved in embryonic development, suggesting regulatory redundancy. Work in Drosophila has indicated that functionally overlapping enhancers canalize development by buffering gene expression against environmental and genetic disturbances.
View Article and Find Full Text PDF