Publications by authors named "Harini Nagaraj"

Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects.

View Article and Find Full Text PDF

Synthetic polymer scaffolds can encapsulate transition metal catalysts (TMCs) to provide bioorthogonal nanocatalysts. These 'polyzymes' catalyze the generation of therapeutic agents without disrupting native biological processes. The design and modification of polymer scaffolds in these polyzymes can enhance the catalytic performance of TMCs in biological environments.

View Article and Find Full Text PDF

Macrophages are multifunctional immune cells essential for both innate and adaptive immune responses. Tumor-associated macrophages (TAMs) often adopt a tumor-promoting M2-like phenotype, aiding tumor progression and immune evasion. Reprogramming TAMs to a tumoricidal M1-like phenotype is an emerging target for cancer immunotherapy.

View Article and Find Full Text PDF

Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm).

View Article and Find Full Text PDF

Vaccination through cellular transfection of nucleotide-based vaccines is a powerful approach to combatting disease. Plasmid DNA (pDNA) vaccines are particularly promising vectors for non-viral immunomodulation that afford high degrees of potency and flexibility. Versatile guanidinium-functionalized poly(oxanorbornene)imide (PONI-Guan) homopolymers were used to facilitate non-disruptive pDNA condensation into discrete polyplexes, enabling efficient transfection of endothelial cells and HD-11 macrophages.

View Article and Find Full Text PDF

Uncontrolled inflammation is responsible for acute and chronic diseases in the lung. Regulating expression of pro-inflammatory genes in pulmonary tissue using small interfering RNA (siRNA) is a promising approach to combatting respiratory diseases. However, siRNA therapeutics are generally hindered at the cellular level by endosomal entrapment of delivered cargo and at the organismal level by inefficient localization in pulmonary tissue.

View Article and Find Full Text PDF

Current intracellular protein delivery strategies face the challenge of endosomal entrapment and consequent degradation of protein cargo. Methods to efficiently deliver proteins directly to the cytosol have the potential to overcome this hurdle. Here, we report the use of a straightforward approach of protein modification using citraconic anhydride to impart an overall negative charge on the proteins, enabling them to assemble with positively charged nano vectors.

View Article and Find Full Text PDF

Current strategies for the delivery of proteins into cells face general challenges of endosomal entrapment and concomitant degradation of protein cargo. Efficient delivery directly to the cytosol overcomes this obstacle: we report here the use of biotin-streptavidin tethering to provide a modular approach to the generation of nanovectors capable of a cytosolic delivery of biotinylated proteins. This strategy uses streptavidin to organize biotinylated protein and biotinylated oligo(glutamate) peptide into modular complexes that are then electrostatically self-assembled with a cationic guanidinium-functionalized polymer.

View Article and Find Full Text PDF

Purpose: Cytosolic delivery of proteins accesses intracellular targets for chemotherapy and immunomodulation. Current delivery systems utilize inefficient endosomal pathways of uptake and escape that lead to degradation of delivered cargo. Cationic poly(oxanorbornene)imide (PONI) polymers enable highly efficient cytosolic delivery of co-engineered proteins, but aggregation and denaturation in solution limits shelf life.

View Article and Find Full Text PDF

Intracellular protein delivery is a transformative tool for biologics research and medicine. Delivery into the cytosol allows proteins to diffuse throughout the cell and access subcellular organelles. Inefficient delivery caused by endosomal entrapment is often misidentified as cytosolic delivery.

View Article and Find Full Text PDF

Protein-based therapeutics have unique therapeutic potential due to their specificity, potency, and low toxicity. The vast majority of intracellular applications of proteins require access to the cytosol. Direct entry to the cytosol is challenging due to the impermeability of the cell membrane to proteins.

View Article and Find Full Text PDF

Inorganic nanoparticles provide multipurpose platforms for a broad range of delivery applications. Intrinsic nanoscopic properties provide access to unique magnetic and optical properties. Equally importantly, the structural and functional diversity of gold, silica, iron oxide, and lanthanide-based nanocarriers provide unrivalled control of nanostructural properties for effective transport of therapeutic cargos, overcoming biobarriers on the cellular and organismal level.

View Article and Find Full Text PDF

Macrophages are key effectors of host defense and metabolism, making them promising targets for transient genetic therapy. Gene editing through delivery of the Cas9-ribonucleoprotein (RNP) provides multiple advantages over gene delivery-based strategies for introducing CRISPR machinery to the cell. There are, however, significant physiological, cellular, and intracellular barriers to the effective delivery of the Cas9 protein and guide RNA (sgRNA) that have to date, restricted Cas9 protein-based approaches to local/topical delivery applications.

View Article and Find Full Text PDF