Publications by authors named "Harini Kaluarachchi"

Disulfide constrained peptides (DCPs) show great potential as templates for drug discovery. They are characterized by conserved cysteine residues that form intramolecular disulfide bonds. Taking advantage of phage display technology, we designed and generated twenty-six DCP phage libraries with enriched molecular diversity to enable the discovery of ligands against disease-causing proteins of interest.

View Article and Find Full Text PDF

The multi-attribute method (MAM) was conceived as a single assay to potentially replace multiple single-attribute assays that have long been used in process development and quality control (QC) for protein therapeutics. MAM is rooted in traditional peptide mapping methods; it leverages mass spectrometry (MS) detection for confident identification and quantitation of many types of protein attributes that may be targeted for monitoring. While MAM has been widely explored across the industry, it has yet to gain a strong foothold within QC laboratories as a replacement method for established orthogonal platforms.

View Article and Find Full Text PDF

The Multi-Attribute Method (MAM) Consortium was initially formed as a venue to harmonize best practices, share experiences, and generate innovative methodologies to facilitate widespread integration of the MAM platform, which is an emerging ultra-high-performance liquid chromatography-mass spectrometry application. Successful implementation of MAM as a purity-indicating assay requires new peak detection (NPD) of potential process- and/or product-related impurities. The NPD interlaboratory study described herein was carried out by the MAM Consortium to report on the industry-wide performance of NPD using predigested samples of the NISTmAb Reference Material 8671.

View Article and Find Full Text PDF

Cyclotides or cyclic cystine-knot peptides have emerged as a promising class of pharmacological ligands that modulate protein function. Interestingly, very few cyclotides have been shown to enter into cells. Yet, it remains unknown whether backbone cyclization is required for their cellular internalization.

View Article and Find Full Text PDF

Cell signaling relies extensively on dynamic pools of redox-inactive metal ions such as sodium, potassium, calcium and zinc, but their redox-active transition metal counterparts such as copper and iron have been studied primarily as static enzyme cofactors. Here we report that copper is an endogenous regulator of lipolysis, the breakdown of fat, which is an essential process in maintaining body weight and energy stores. Using a mouse model of genetic copper misregulation, in combination with pharmacological alterations in copper status and imaging studies in a 3T3-L1 white adipocyte model, we found that copper regulates lipolysis at the level of the second messenger, cyclic AMP (cAMP), by altering the activity of the cAMP-degrading phosphodiesterase PDE3B.

View Article and Find Full Text PDF

Cyclotides belong to the family of cyclic cystine-knot peptides and have shown promise as scaffolds for protein engineering and pharmacological modulation of cellular protein activity. Cyclotides are characterized by a cystine-knotted topology and a head-to-tail cyclic polypeptide backbone. While they are primarily produced in plants, cyclotides have also been obtained by chemical synthesis.

View Article and Find Full Text PDF

The maturation of [NiFe]-hydrogenase in Escherichia coli is a complex process involving many steps and multiple accessory proteins. The two accessory proteins HypA and HypB interact with each other and are thought to cooperate to insert nickel into the active site of the hydrogenase-3 precursor protein. Both of these accessory proteins bind metal individually, but little is known about the metal-binding activities of the proteins once they assemble together into a functional complex.

View Article and Find Full Text PDF

SlyD (sensitive to lysis D) is a nickel metallochaperone involved in the maturation of [NiFe]-hydrogenases in Escherichia coli (E. coli) and specifically contributes to the nickel delivery step during enzyme biosynthesis. This protein contains a C-terminal metal-binding domain that is rich in potential metal-binding residues that enable SlyD to bind multiple nickel ions with high affinity.

View Article and Find Full Text PDF

SlyD interacts with HypB and contributes to nickel insertion during [NiFe]-hydrogenase biogenesis. Herein, we provide evidence of SlyD acting as a nickel storage determinant in Escherichia coli and show that this Ni(II) can be mobilized to HypB in vitro even under competitive conditions. Furthermore, SlyD enhances the GTPase activity of HypB, and acceleration of release of Ni(II) from HypB is more pronounced when HypB is GDP-bound.

View Article and Find Full Text PDF

SlyD is a Ni(II)-binding protein that contributes to nickel homeostasis in Escherichia coli. The C-terminal domain of SlyD contains a rich variety of metal-binding amino acids, suggesting broader metal binding capabilities, and previous work demonstrated that the protein can coordinate several types of first-row transition metals. However, the binding of SlyD to metals other than Ni(II) has not been previously characterized.

View Article and Find Full Text PDF

Biosynthesis of the metallocenter in the active site of the [NiFe] hydrogenase enzyme requires the accessory protein HypB, which is a metal-binding GTPase. In this study, the interplay between the individual activities of Escherichia coli HypB was examined. The full-length protein undergoes nucleotide-responsive dimerization that is disrupted upon mutation of L242 and L246 to alanine.

View Article and Find Full Text PDF

Microorganisms have evolved to utilize nickel ions in several different enzyme systems that enable these organisms to survive and proliferate in various environments. Typically the biosynthesis of these nickel containing enzymes are multi-step processes involving a number of accessory proteins, with one or more proteins dedicated to the delivery of the cognate nickel ion to the active site of the enzyme. This review highlights the nickel proteins dedicated to the biogenesis of [NiFe]-hydrogenase, urease, and carbon monoxide dehydrogenase, and aims to summarize our current knowledge of these unique proteins.

View Article and Find Full Text PDF

Metallochaperones are essential for the safe and targeted delivery of necessary yet toxic metal cofactors to their respective protein partners. In this study we examine the nickel-binding properties of the Escherichia coli protein SlyD, a factor that contributes to optimal nickel accumulation in this organism. This protein is also required for E.

View Article and Find Full Text PDF

The syntheses and properties are reported for five Ru(acac)2(R-bqdi) species where acac is acetylacetonate, and R-bqdi is the non-innocent ligand ortho-benzoquinonediimine substituted with R = H (1), 4,5-dimethyl (2), 4-Cl (3), or 4-NO2 (4), and N,N''-dimethylsulfonyl (5). Their identities and purities were confirmed by NMR, mass spectra, IR and analytical data. The large degree of metal-to-ligand pi-back-donation was analyzed by spectroscopic (UV/visible, IR, Raman) and electrochemical data, supported by molecular orbital composition computations using density functional theory (DFT), with the polarizable continuum model (PCM) to mimic the presence of solvent, and prediction of electronic spectra using time-dependent DFT methods.

View Article and Find Full Text PDF

The reaction of Pb(ClO4)2 x xH2O, an ancillary ligand L, and two equivalents of Au(CN)2(-) gave a series of crystalline coordination polymers, which were structurally characterized. The ligands were chosen to represent a range of increasing basicity, to influence the stereochemical activity (i.e.

View Article and Find Full Text PDF