Publications by authors named "Harini Eavani"

Disentangling the heterogeneity of brain aging in cognitively normal older adults is challenging, as multiple co-occurring pathologic processes result in diverse functional and structural changes. Capitalizing on machine learning methods applied to magnetic resonance imaging data from 400 participants aged 50 to 96 years in the Baltimore Longitudinal Study of Aging, we constructed normative cross-sectional brain aging trajectories of structural and functional changes. Deviations from typical trajectories identified individuals with resilient brain aging and multiple subtypes of advanced brain aging.

View Article and Find Full Text PDF

In MRI studies, linear multi-variate methods are often employed to identify regions or connections that are affected due to disease or normal aging. Such linear models inherently assume that there is a single, homogeneous abnormality pattern that is present in all affected individuals. While kernel-based methods can implicitly model a non-linear effect, and therefore the heterogeneity in the affected group, extracting and interpreting information about affected regions is difficult.

View Article and Find Full Text PDF

Functional connectivity using resting-state fMRI has emerged as an important research tool for understanding normal brain function as well as changes occurring during brain development and in various brain disorders. Most prior work has examined changes in pairwise functional connectivity values using a multi-variate classification approach, such as Support Vector Machines (SVM). While it is powerful, SVMs produce a dense set of high-dimensional weight vectors as output, which are difficult to interpret, and require additional post-processing to relate to known functional networks.

View Article and Find Full Text PDF

The human brain processes information via multiple distributed networks. An accurate model of the brain's functional connectome is critical for understanding both normal brain function as well as the dysfunction present in neuropsychiatric illnesses. Current methodologies that attempt to discover the organization of the functional connectome typically assume spatial or temporal separation of the underlying networks.

View Article and Find Full Text PDF

Estimating functional brain networks from fMRI data has been the focus of much research in recent years. Low sample sizes (time-points) and high dimensionality of fMRI has restricted estimation to a temporally averaged connectivity matrix per subject, due to which the dynamics of functional connectivity is largely unknown. In this paper, we propose a novel method based on constrained matrix factorization that addresses two major issues.

View Article and Find Full Text PDF

Research in recent years has provided some evidence of temporal non-stationarity of functional connectivity in resting state fMRI. In this paper, we present a novel methodology that can decode connectivity dynamics into a temporal sequence of hidden network "states" for each subject, using a Hidden Markov Modeling (HMM) framework. Each state is characterized by a unique covariance matrix or whole-brain network.

View Article and Find Full Text PDF

Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks.

View Article and Find Full Text PDF

The paper presents a method for creating abnormality classifiers from high angular resolution diffusion imaging (HARDI) data. We utilized the fiber orientation distribution (FOD) diffusion model to represent the local WM architecture of each subject. The FOD images are then spatially normalized to a common template using a non-linear registration technique.

View Article and Find Full Text PDF

Most diffusion imaging studies have used subject registration to an atlas space for enhanced quantification of anatomy. However, standard diffusion tensor atlases lack information in regions of fiber crossing and are based on adult anatomy. The degree of error associated with applying these atlases to studies of children for example has not yet been estimated but may lead to suboptimal results.

View Article and Find Full Text PDF